論文の概要: FELLE: Autoregressive Speech Synthesis with Token-Wise Coarse-to-Fine Flow Matching
- arxiv url: http://arxiv.org/abs/2502.11128v1
- Date: Sun, 16 Feb 2025 13:54:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:09:21.913466
- Title: FELLE: Autoregressive Speech Synthesis with Token-Wise Coarse-to-Fine Flow Matching
- Title(参考訳): FELLE:Token-Wise Coarse-to-Fine Flow Matchingを用いた自動回帰音声合成
- Authors: Hui Wang, Shujie Liu, Lingwei Meng, Jinyu Li, Yifan Yang, Shiwan Zhao, Haiyang Sun, Yanqing Liu, Haoqin Sun, Jiaming Zhou, Yan Lu, Yong Qin,
- Abstract要約: FELLEは、言語モデリングとトークンワイドフローマッチングを統合する自動回帰モデルである。
各連続値トークンに対して、FELLEは、前ステップからの情報を組み込んで、フローマッチングにおける一般的な事前分布を変更する。
FELLEは、言語モデルの出力に基づいて階層的に連続値のトークンを生成する。
- 参考スコア(独自算出の注目度): 51.32059240975148
- License:
- Abstract: To advance continuous-valued token modeling and temporal-coherence enforcement, we propose FELLE, an autoregressive model that integrates language modeling with token-wise flow matching. By leveraging the autoregressive nature of language models and the generative efficacy of flow matching, FELLE effectively predicts continuous-valued tokens (mel-spectrograms). For each continuous-valued token, FELLE modifies the general prior distribution in flow matching by incorporating information from the previous step, improving coherence and stability. Furthermore, to enhance synthesis quality, FELLE introduces a coarse-to-fine flow-matching mechanism, generating continuous-valued tokens hierarchically, conditioned on the language model's output. Experimental results demonstrate the potential of incorporating flow-matching techniques in autoregressive mel-spectrogram modeling, leading to significant improvements in TTS generation quality, as shown in https://aka.ms/felle.
- Abstract(参考訳): 連続価値トークンモデリングと時間的コヒーレンス化を推し進めるために,トークンワイドフローマッチングと言語モデリングを統合した自己回帰モデルであるFELLEを提案する。
言語モデルの自己回帰特性とフローマッチングの生成効率を活用することにより、FELLEは継続的に評価されたトークン(メル・スペクトログラム)を効果的に予測する。
各連続値トークンに対して、FELLEは、前ステップからの情報を取り込み、コヒーレンスと安定性を向上させることにより、フローマッチングにおける一般的な事前分布を変更する。
さらに、合成品質を向上させるため、FELLEは粗大なフローマッチング機構を導入し、言語モデルの出力に基づいて、階層的に連続値のトークンを生成する。
自動回帰型メル-スペクトログラムモデリングにおけるフローマッチング技術の導入の可能性を示す実験結果が, https://aka.ms/felle に示すように, TTS 生成品質の大幅な改善につながった。
関連論文リスト
- Fluid: Scaling Autoregressive Text-to-image Generative Models with Continuous Tokens [53.99177152562075]
視覚における自己回帰モデルのスケールアップは、大きな言語モデルほど有益でないことが証明されている。
モデルが離散トークンを使用するか、連続トークンを使用するか、BERTやGPTのようなトランスフォーマーアーキテクチャを用いてランダムまたは固定順序でトークンを生成するか、という2つの重要な要素に焦点を当てる。
その結果,すべてのモデルが検証損失の点で効果的にスケールしているのに対して,評価性能はFID,GenEvalスコア,視覚的品質などによって異なる傾向を呈することがわかった。
論文 参考訳(メタデータ) (2024-10-17T17:59:59Z) - Exact Byte-Level Probabilities from Tokenized Language Models for FIM-Tasks and Model Ensembles [23.134664392314264]
トークン化は言語モデル(LM)における多くの未理解の欠点と関連している
本研究は, トークン化がモデルとバイトレベルのモデルを比較し比較することによって, モデル性能に与える影響について検討する。
我々は、さらなるトレーニングや最適化を必要とせず、トークン化バイアスを除去する次世代サンプリングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-10-11T23:30:42Z) - CaLMFlow: Volterra Flow Matching using Causal Language Models [14.035963716966787]
CaLMFlowはVolterra積分方程式(VIE)としてフローマッチングをキャストするフレームワークである
本手法は,空間と時間にまたがるトークン化を実現し,これらの領域上でVIEを解く。
単一セル摂動応答予測を含む合成および実世界のデータに対するCaLMFlowの有効性を実証する。
論文 参考訳(メタデータ) (2024-10-03T05:07:41Z) - Autoregressive Speech Synthesis without Vector Quantization [135.4776759536272]
テキストから音声合成(TTS)のための新しい連続値トークンに基づく言語モデリング手法であるMELLEを提案する。
MELLEはテキスト条件から直接連続メル-スペクトログラムフレームを自動回帰生成する。
論文 参考訳(メタデータ) (2024-07-11T14:36:53Z) - Non-autoregressive Sequence-to-Sequence Vision-Language Models [63.77614880533488]
本稿では,デコーダ内の複数の推論経路をマージする並列デコードシーケンス・ツー・シーケンス・ビジョン言語モデルを提案する。
このモデルは最先端の自己回帰モデルと同等のパフォーマンスを実現するが、推論時間では高速である。
論文 参考訳(メタデータ) (2024-03-04T17:34:59Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - Scalable Learning of Latent Language Structure With Logical Offline
Cycle Consistency [71.42261918225773]
概念的には、LOCCOは、トレーニング対象のセマンティクスを使用してラベルなしテキストのアノテーションを生成する、自己学習の一形態と見なすことができる。
追加ボーナスとして、LOCCOによって生成されたアノテーションは、神経テキスト生成モデルをトレーニングするために自明に再利用することができる。
論文 参考訳(メタデータ) (2023-05-31T16:47:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。