VisPath: Automated Visualization Code Synthesis via Multi-Path Reasoning and Feedback-Driven Optimization
- URL: http://arxiv.org/abs/2502.11140v1
- Date: Sun, 16 Feb 2025 14:09:42 GMT
- Title: VisPath: Automated Visualization Code Synthesis via Multi-Path Reasoning and Feedback-Driven Optimization
- Authors: Wonduk Seo, Seungyong Lee, Daye Kang, Zonghao Yuan, Seunghyun Lee,
- Abstract summary: VisPath is a multi-stage framework specially designed to handle underspecified queries.<n>It first utilizes initial query to generate diverse reformulated queries via Chain-of-Thought (CoT) prompting.<n> refined queries are used to produce candidate visualization scripts, which are then executed to generate multiple images.
- Score: 13.964412839566293
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unprecedented breakthroughs in Large Language Models (LLMs) has amplified its penetration into application of automated visualization code generation. Few-shot prompting and query expansion techniques have notably enhanced data visualization performance, however, still fail to overcome ambiguity and complexity of natural language queries - imposing an inherent burden for manual human intervention. To mitigate such limitations, we propose a holistic framework VisPath : A Multi-Path Reasoning and Feedback-Driven Optimization Framework for Visualization Code Generation, which systematically enhances code quality through structured reasoning and refinement. VisPath is a multi-stage framework, specially designed to handle underspecified queries. To generate a robust final visualization code, it first utilizes initial query to generate diverse reformulated queries via Chain-of-Thought (CoT) prompting, each representing a distinct reasoning path. Refined queries are used to produce candidate visualization scripts, consequently executed to generate multiple images. Comprehensively assessing correctness and quality of outputs, VisPath generates feedback for each image, which are then fed to aggregation module to generate optimal result. Extensive experiments on benchmarks including MatPlotBench and the Qwen-Agent Code Interpreter Benchmark show that VisPath significantly outperforms state-of-the-art (SOTA) methods, increased up to average 17%, offering a more reliable solution for AI-driven visualization code generation.
Related papers
- Developing Visual Augmented Q&A System using Scalable Vision Embedding Retrieval & Late Interaction Re-ranker [0.0]
This paper explores a pragmatic approach to make vision retrieval process scalable and efficient without compromising on performance quality.<n>We propose multi-step custom implementation utilizing widely adopted hybrid search (metadata & embedding) and state of the art late interaction re-ranker to retrieve best matching pages.
arXiv Detail & Related papers (2025-07-16T16:27:05Z) - Multi-Step Visual Reasoning with Visual Tokens Scaling and Verification [22.871255950998016]
We introduce a novel framework for inference-time visual tokens scaling that enables MLLMs to perform verifier-guided reasoning over visual content.<n>Our method significantly outperforms existing approaches across diverse visual reasoning benchmarks.<n>These results demonstrate the promise of dynamic inference mechanisms for enabling fine-grained, context-aware visual reasoning in next-generation MLLMs.
arXiv Detail & Related papers (2025-06-08T17:38:49Z) - QID: Efficient Query-Informed ViTs in Data-Scarce Regimes for OCR-free Visual Document Understanding [53.69841526266547]
Fine-tuning a pre-trained Vision-Language Model with new datasets often falls short in optimizing the vision encoder.
We introduce QID, a novel, streamlined, architecture-preserving approach that integrates query embeddings into the vision encoder.
arXiv Detail & Related papers (2025-04-03T18:47:16Z) - Towards Text-Image Interleaved Retrieval [49.96332254241075]
We introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences.
We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries.
We propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity.
arXiv Detail & Related papers (2025-02-18T12:00:47Z) - VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
This paper introduces VisDoMBench, the first comprehensive benchmark designed to evaluate QA systems in multi-document settings.<n>We propose VisDoMRAG, a novel multimodal Retrieval Augmented Generation (RAG) approach that simultaneously utilizes visual and textual RAG.
arXiv Detail & Related papers (2024-12-14T06:24:55Z) - Trust but Verify: Programmatic VLM Evaluation in the Wild [62.14071929143684]
Programmatic VLM Evaluation (PROVE) is a new benchmarking paradigm for evaluating VLM responses to open-ended queries.
We benchmark the helpfulness-truthfulness trade-offs of a range ofVLMs on PROVE, finding that very few are in-fact able to achieve a good balance between the two.
arXiv Detail & Related papers (2024-10-17T01:19:18Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.<n>We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.<n> Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - De-fine: Decomposing and Refining Visual Programs with Auto-Feedback [75.62712247421146]
De-fine is a training-free framework that decomposes complex tasks into simpler subtasks and refines programs through auto-feedback.
Our experiments across various visual tasks show that De-fine creates more robust programs.
arXiv Detail & Related papers (2023-11-21T06:24:09Z) - Good Visual Guidance Makes A Better Extractor: Hierarchical Visual
Prefix for Multimodal Entity and Relation Extraction [88.6585431949086]
We propose a novel Hierarchical Visual Prefix fusion NeTwork (HVPNeT) for visual-enhanced entity and relation extraction.
We regard visual representation as pluggable visual prefix to guide the textual representation for error insensitive forecasting decision.
Experiments on three benchmark datasets demonstrate the effectiveness of our method, and achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-05-07T02:10:55Z) - Weakly Supervised Visual Semantic Parsing [49.69377653925448]
Scene Graph Generation (SGG) aims to extract entities, predicates and their semantic structure from images.
Existing SGG methods require millions of manually annotated bounding boxes for training.
We propose Visual Semantic Parsing, VSPNet, and graph-based weakly supervised learning framework.
arXiv Detail & Related papers (2020-01-08T03:46:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.