Quantifying the Capability Boundary of DeepSeek Models: An Application-Driven Performance Analysis
- URL: http://arxiv.org/abs/2502.11164v1
- Date: Sun, 16 Feb 2025 15:29:58 GMT
- Title: Quantifying the Capability Boundary of DeepSeek Models: An Application-Driven Performance Analysis
- Authors: Shiguo Lian, Kaikai Zhao, Xuejiao Lei, Ning Wang, Zhenhong Long, Peijun Yang, Minjie Hua, Chaoyang Ma, Wen Liu, Kai Wang, Zhaoxiang Liu,
- Abstract summary: We evaluate the DeepSeek-V3, DeepSeek-R1, DeepSeek-R1-Distill-Qwen series, and DeepSeek-R1-Distill-Llama series on A-Eval.
By comparing original instruction-tuned models with their distilled counterparts, we analyze how reasoning enhancements impact performance.
- Score: 7.912726229643101
- License:
- Abstract: DeepSeek-R1, known for its low training cost and exceptional reasoning capabilities, has achieved state-of-the-art performance on various benchmarks. However, detailed evaluations from the perspective of real-world applications are lacking, making it challenging for users to select the most suitable DeepSeek models for their specific needs. To address this gap, we evaluate the DeepSeek-V3, DeepSeek-R1, DeepSeek-R1-Distill-Qwen series, and DeepSeek-R1-Distill-Llama series on A-Eval, an application-driven benchmark. By comparing original instruction-tuned models with their distilled counterparts, we analyze how reasoning enhancements impact performance across diverse practical tasks. Our results show that reasoning-enhanced models, while generally powerful, do not universally outperform across all tasks, with performance gains varying significantly across tasks and models. To further assist users in model selection, we quantify the capability boundary of DeepSeek models through performance tier classifications and intuitive line charts. Specific examples provide actionable insights to help users select and deploy the most cost-effective DeepSeek models, ensuring optimal performance and resource efficiency in real-world applications.
Related papers
- Finedeep: Mitigating Sparse Activation in Dense LLMs via Multi-Layer Fine-Grained Experts [82.74439280067492]
Finedeep is a deep-layered fine-grained expert architecture for dense models.
Our framework partitions the feed-forward neural network layers of traditional dense models into small experts.
A novel routing mechanism is proposed to determine each expert's contribution.
arXiv Detail & Related papers (2025-02-18T15:09:58Z) - Human Re-ID Meets LVLMs: What can we expect? [14.370360290704197]
We compare the performance of the leading large vision-language models in the human re-identification task.
Our results confirm the strengths of LVLMs, but also their severe limitations that often lead to catastrophic answers.
arXiv Detail & Related papers (2025-01-30T19:00:40Z) - Revisiting BPR: A Replicability Study of a Common Recommender System Baseline [78.00363373925758]
We study the features of the BPR model, indicating their impact on its performance, and investigate open-source BPR implementations.
Our analysis reveals inconsistencies between these implementations and the original BPR paper, leading to a significant decrease in performance of up to 50% for specific implementations.
We show that the BPR model can achieve performance levels close to state-of-the-art methods on the top-n recommendation tasks and even outperform them on specific datasets.
arXiv Detail & Related papers (2024-09-21T18:39:53Z) - Studying How to Efficiently and Effectively Guide Models with Explanations [52.498055901649025]
'Model guidance' is the idea of regularizing the models' explanations to ensure that they are "right for the right reasons"
We conduct an in-depth evaluation across various loss functions, attribution methods, models, and 'guidance depths' on the PASCAL VOC 2007 and MS COCO 2014 datasets.
Specifically, we guide the models via bounding box annotations, which are much cheaper to obtain than the commonly used segmentation masks.
arXiv Detail & Related papers (2023-03-21T15:34:50Z) - Rethinking Pareto Frontier for Performance Evaluation of Deep Neural
Networks [2.167843405313757]
We re-define the efficiency measure using a multi-objective optimization.
We combine competing variables with nature simultaneously in a single relative efficiency measure.
This allows to rank deep models that run efficiently on different computing hardware, and combines inference efficiency with training efficiency objectively.
arXiv Detail & Related papers (2022-02-18T15:58:17Z) - When Liebig's Barrel Meets Facial Landmark Detection: A Practical Model [87.25037167380522]
We propose a model that is accurate, robust, efficient, generalizable, and end-to-end trainable.
In order to achieve a better accuracy, we propose two lightweight modules.
DQInit dynamically initializes the queries of decoder from the inputs, enabling the model to achieve as good accuracy as the ones with multiple decoder layers.
QAMem is designed to enhance the discriminative ability of queries on low-resolution feature maps by assigning separate memory values to each query rather than a shared one.
arXiv Detail & Related papers (2021-05-27T13:51:42Z) - BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information
Retrieval Models [41.45240621979654]
We introduce BEIR, a heterogeneous benchmark for information retrieval.
We study the effectiveness of nine state-of-the-art retrieval models in a zero-shot evaluation setup.
Dense-retrieval models are computationally more efficient but often underperform other approaches.
arXiv Detail & Related papers (2021-04-17T23:29:55Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.