SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors
- URL: http://arxiv.org/abs/2502.11167v2
- Date: Mon, 03 Mar 2025 08:26:12 GMT
- Title: SURGE: On the Potential of Large Language Models as General-Purpose Surrogate Code Executors
- Authors: Bohan Lyu, Siqiao Huang, Zichen Liang,
- Abstract summary: Large language models (LLMs) have demonstrated remarkable capabilities in code-related tasks.<n>Given LLMs' ability to understand and process diverse programs, they present a promising direction for building general-purpose surrogate models.<n>We introduce SURGE, a benchmark with $1160$ problems covering $8$ key aspects.<n>Through empirical analysis of $21$ open-source and proprietary LLMs, we examine scaling laws, data efficiency, and predictive accuracy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural surrogate models have emerged as powerful and efficient tools in data mining. Meanwhile, large language models (LLMs) have demonstrated remarkable capabilities in code-related tasks. We investigate a novel application: using LLMs as surrogate models for code execution prediction. Given LLMs' unique ability to understand and process diverse programs, they present a promising direction for building general-purpose surrogate models. To systematically investigate this capability, we introduce SURGE, a comprehensive benchmark with $1160$ problems covering $8$ key aspects: multi-language programming tasks, competition-level programming problems, repository-level code analysis, high-cost scientific computing, time-complexity-intensive algorithms, buggy code analysis, programs dependent on specific compilers or execution environments, and formal mathematical proof verification. Through extensive empirical analysis of $21$ open-source and proprietary LLMs, we examine scaling laws, data efficiency, and predictive accuracy. Our findings reveal important insights about the feasibility of LLMs as efficient surrogates for computational processes, with implications for automated software testing, program analysis, and computational resource optimization in data mining applications. Code and dataset are released at https://github.com/Imbernoulli/SURGE.
Related papers
- LLM Benchmarking with LLaMA2: Evaluating Code Development Performance Across Multiple Programming Languages [0.1906498126334485]
This paper evaluates the capabilities of the Llama 2-70B model in automating scientific applications written in programming languages.
We assess the model's capacity to generate code, documentation, and unit tests, as well as its ability to translate existing code between programming languages.
Our results indicate that while Llama 2-70B frequently generates syntactically correct and functional code for simpler numerical tasks, it encounters substantial difficulties with more complex, parallelized, or distributed computations.
arXiv Detail & Related papers (2025-03-24T23:46:14Z) - CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation [24.090719826360342]
We introduce CodeIF, the first benchmark designed to assess the abilities of Large Language Models (LLMs) to adhere to task-oriented instructions within code generation scenarios.
We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks.
arXiv Detail & Related papers (2025-02-26T14:19:49Z) - SnipGen: A Mining Repository Framework for Evaluating LLMs for Code [51.07471575337676]
Language Models (LLMs) are trained on extensive datasets that include code repositories.
evaluating their effectiveness poses significant challenges due to the potential overlap between the datasets used for training and those employed for evaluation.
We introduce SnipGen, a comprehensive repository mining framework designed to leverage prompt engineering across various downstream tasks for code generation.
arXiv Detail & Related papers (2025-02-10T21:28:15Z) - A Tool for In-depth Analysis of Code Execution Reasoning of Large Language Models [1.644043499620662]
This paper introduces ExeRScope, a series of tools to analyze the result of code execution reasoning frameworks.<n>Analysis can be generalized to code with similar properties without the urgent need to design more benchmarks.
arXiv Detail & Related papers (2025-01-30T16:56:08Z) - Pseudocode-Injection Magic: Enabling LLMs to Tackle Graph Computational Tasks [15.69049038121735]
Graph computational tasks are inherently challenging and often demand advanced algorithms for effective solutions.
Existing approaches are constrained by large language models' limited capability to comprehend complex graph structures.
We introduce a novel framework, PIE, which consists of three key steps: problem understanding, prompt design, and code generation.
arXiv Detail & Related papers (2025-01-23T15:04:22Z) - OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.
While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.
We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights [9.414198519543564]
We present codellm-devkit (hereafter, CLDK'), an open-source library that significantly simplifies the process of performing program analysis.
CLDK offers developers an intuitive and user-friendly interface, making it incredibly easy to provide rich program analysis context to code LLMs.
arXiv Detail & Related papers (2024-10-16T20:05:59Z) - Studying and Benchmarking Large Language Models For Log Level Suggestion [49.176736212364496]
Large Language Models (LLMs) have become a focal point of research across various domains.
This paper investigates the impact of characteristics and learning paradigms on the performance of 12 open-source LLMs in log level suggestion.
arXiv Detail & Related papers (2024-10-11T03:52:17Z) - Case2Code: Scalable Synthetic Data for Code Generation [105.89741089673575]
Large Language Models (LLMs) have shown outstanding breakthroughs in code generation.<n>Recent work improves code LLMs by training on synthetic data generated by some powerful LLMs.<n>We propose a textbfCase2Code task by exploiting the expressiveness and correctness of programs.
arXiv Detail & Related papers (2024-07-17T11:35:00Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
We introduce BigCodeBench, a benchmark that challenges Large Language Models (LLMs) to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained tasks.
Our evaluation shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%.
We propose a natural-language-oriented variant of BigCodeBench, BigCodeBench-Instruct, that automatically transforms the original docstrings into short instructions only with essential information.
arXiv Detail & Related papers (2024-06-22T15:52:04Z) - Perplexed: Understanding When Large Language Models are Confused [3.4208414448496027]
This paper introduces perplexed, a library for exploring where a language model is perplexed.
We conducted a case study focused on Large Language Models (LLMs) for code generation using an additional tool we built to help with the analysis of code models called codetokenizer.
We found that our studied code LLMs had their worst performance on coding structures where the code was not syntactically correct.
arXiv Detail & Related papers (2024-04-09T22:03:39Z) - Reasoning Runtime Behavior of a Program with LLM: How Far Are We? [25.451857140926943]
Large language models for code (i.e., code LLMs) have shown strong code understanding and generation capabilities.
Code reasoning is one of the most essential abilities of code LLMs.
We propose a framework, namely REval, for evaluating code reasoning abilities and consistency of code LLMs with program execution.
arXiv Detail & Related papers (2024-03-25T05:37:16Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBench is the first large-scale freeform question-answering (QA) benchmark for code to our knowledge.
It comprises 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages.
We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings.
arXiv Detail & Related papers (2024-03-11T02:06:30Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - Benchmarking and Explaining Large Language Model-based Code Generation:
A Causality-Centric Approach [12.214585409361126]
Large language models (LLMs)- based code generation is a complex and powerful black-box model.
We propose a novel causal graph-based representation of the prompt and the generated code.
We illustrate the insights that our framework can provide by studying over 3 popular LLMs with over 12 prompt adjustment strategies.
arXiv Detail & Related papers (2023-10-10T14:56:26Z) - Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with Large Language Models [11.845239346943067]
parameter-efficient fine-tuning (PEFT) is a promising approach to efficiently specialize large language models (LLMs) to task-specific data.
Our study highlights the potential for tuning larger LLMs and significant reductions in memory usage by combining PEFT with quantization.
arXiv Detail & Related papers (2023-08-21T04:31:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.