論文の概要: From Deception to Perception: The Surprising Benefits of Deepfakes for Detecting, Measuring, and Mitigating Bias
- arxiv url: http://arxiv.org/abs/2502.11195v1
- Date: Sun, 16 Feb 2025 16:55:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:15:14.772279
- Title: From Deception to Perception: The Surprising Benefits of Deepfakes for Detecting, Measuring, and Mitigating Bias
- Title(参考訳): 認知から知覚へ:細菌の検出・測定・緩和のためのディープフェイクの意外なメリット
- Authors: Yizhi Liu, Balaji Padmanabhan, Siva Viswanathan,
- Abstract要約: ディープフェイク技術は 悪用の可能性があると 批判されています
本研究は、重要な社会的領域におけるバイアスを検出し、測定し、緩和するためのツールとして、その重要な可能性を実証する。
- 参考スコア(独自算出の注目度): 5.239071937714991
- License:
- Abstract: While deepfake technologies have predominantly been criticized for potential misuse, our study demonstrates their significant potential as tools for detecting, measuring, and mitigating biases in key societal domains. By employing deepfake technology to generate controlled facial images, we extend the scope of traditional correspondence studies beyond mere textual manipulations. This enhancement is crucial in scenarios such as pain assessments, where subjective biases triggered by sensitive features in facial images can profoundly affect outcomes. Our results reveal that deepfakes not only maintain the effectiveness of correspondence studies but also introduce groundbreaking advancements in bias measurement and correction techniques. This study emphasizes the constructive role of deepfake technologies as essential tools for advancing societal equity and fairness.
- Abstract(参考訳): ディープフェイク技術は、潜在的な誤用に対して主に批判されているが、本研究では、主要な社会的領域におけるバイアスを検出し、測定し、緩和するためのツールとして、その大きな可能性を実証している。
制御された顔画像を生成するためにディープフェイク技術を利用することで、テキスト操作以外の従来の対応研究の範囲を広げる。
この強化は、顔画像の繊細な特徴によって引き起こされる主観的偏見が結果に大きく影響する、痛み評価のようなシナリオにおいて重要である。
以上の結果から,ディープフェイクは対応研究の有効性を保ちつつ,バイアス測定と補正技術に画期的な進歩をもたらすことが明らかとなった。
本研究は, 社会的公平性と公正性を高めるための重要なツールとして, ディープフェイク技術の構築的役割を強調した。
関連論文リスト
- Do Deepfake Detectors Work in Reality? [3.230104201410257]
ディープフェイク、特にフェイスワップによる操作は、社会的な懸念を引き起こしている。
生成モデルの急速な進歩にもかかわらず、検出方法はペースを保っておらず、防衛戦略において重要なギャップを形成している。
実世界のシナリオで一般的に使用される超解像のポストプロセッシングステップは,既存のディープフェイク検出手法の有効性を著しく損なう。
論文 参考訳(メタデータ) (2025-02-15T22:38:40Z) - Understanding Audiovisual Deepfake Detection: Techniques, Challenges, Human Factors and Perceptual Insights [49.81915942821647]
ディープラーニングは様々な分野に適用され、ディープフェイク検出への影響は例外ではない。
ディープフェイク(英: Deepfakes)は、政治的偽造、フィッシング、スランダリング、偽情報の拡散に偽装的に使用できる、偽物だが現実的な合成コンテンツである。
本稿では,ディープフェイク検出戦略の有効性を改善し,サイバーセキュリティとメディアの整合性に関する今後の研究を導くことを目的とする。
論文 参考訳(メタデータ) (2024-11-12T09:02:11Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
ディープラーニングにより、高忠実度顔画像やビデオの作成や操作が可能になった。
この技術はディープフェイクとしても知られ、劇的な進歩を遂げ、ソーシャルメディアで人気を博している。
ディープフェイクのリスクを低減するため、強力な偽造検出方法を開発することが望ましい。
論文 参考訳(メタデータ) (2024-09-22T01:42:01Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AIが生成する合成メディア、別名Deepfakesは、エンターテイメントからサイバーセキュリティまで、多くの領域に影響を与えている。
ディープフェイク検出は、微妙な矛盾やアーティファクトを機械学習技術で識別することに焦点を当て、研究の不可欠な領域となっている。
本稿では,これらの課題に対処する主要なアルゴリズムについて,その利点,限界,今後の展望について検討する。
論文 参考訳(メタデータ) (2024-08-01T08:57:47Z) - Adversarially Robust Deepfake Detection via Adversarial Feature Similarity Learning [0.0]
ディープフェイク技術は、デジタルコンテンツの信頼性を懸念し、効果的な検出方法の開発を必要としている。
敵は、検出モデルを騙して誤った出力を生成する、小さくて知覚できない摂動でディープフェイクビデオを操作できる。
本稿では,3つの基本的深い特徴学習パラダイムを統合したAFSL(Adversarial Feature similarity Learning)を紹介する。
論文 参考訳(メタデータ) (2024-02-06T11:35:05Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Assessment Framework for Deepfake Detection in Real-world Situations [13.334500258498798]
ディープラーニングに基づくディープフェイク検出手法は優れた性能を示した。
様々な画像処理操作と典型的なワークフロー歪みが検出精度に与える影響は, 体系的に測定されていない。
より現実的な環境下での学習に基づくディープフェイク検出の性能を評価するために,より信頼性の高い評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-12T19:09:22Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - Affect Analysis in-the-wild: Valence-Arousal, Expressions, Action Units
and a Unified Framework [83.21732533130846]
Aff-Wild と Aff-Wild2 の2つである。
これは、これらのデータベースで訓練された深層ニューラルネットワークの2つのクラスの設計を示す。
インパクト認識を共同で学び、効果的に一般化し、実行することができる新しいマルチタスクおよび全体主義のフレームワークが提示されます。
論文 参考訳(メタデータ) (2021-03-29T17:36:20Z) - Towards Generalizable and Robust Face Manipulation Detection via
Bag-of-local-feature [55.47546606878931]
そこで本稿では,局所的特徴の一般化能力とロバスト性を向上する顔の操作検出手法を提案する。
具体的には、パッチ間関係をエンコードするためにbag-of-featureアプローチを使ってトランスフォーマーを拡張し、明示的な監督なしにローカルな偽造機能を学ぶことができる。
論文 参考訳(メタデータ) (2021-03-14T12:50:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。