論文の概要: Bridging the Gap: Enabling Natural Language Queries for NoSQL Databases through Text-to-NoSQL Translation
- arxiv url: http://arxiv.org/abs/2502.11201v1
- Date: Sun, 16 Feb 2025 17:01:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:09:30.980657
- Title: Bridging the Gap: Enabling Natural Language Queries for NoSQL Databases through Text-to-NoSQL Translation
- Title(参考訳): ギャップを埋める - テキストからNoSQLへの変換によるNoSQLデータベースの自然言語クエリの実現
- Authors: Jinwei Lu, Yuanfeng Song, Zhiqian Qin, Haodi Zhang, Chen Zhang, Raymond Chi-Wing Wong,
- Abstract要約: 自然言語クエリをアクセス可能なクエリに変換することを目的としたText-to-Noタスクを導入する。
この分野での研究を促進するために、我々はTEND(Text-to-Noデータセットのショートインターフェース)という、このタスクのための大規模かつオープンソースのデータセットをリリースした。
また,SLM(Small Language Model)支援とRAG(Retrieval-augmented Generation)支援の多段階フレームワークSMARTを設計した。
- 参考スコア(独自算出の注目度): 25.638927795540454
- License:
- Abstract: NoSQL databases have become increasingly popular due to their outstanding performance in handling large-scale, unstructured, and semi-structured data, highlighting the need for user-friendly interfaces to bridge the gap between non-technical users and complex database queries. In this paper, we introduce the Text-to-NoSQL task, which aims to convert natural language queries into NoSQL queries, thereby lowering the technical barrier for non-expert users. To promote research in this area, we developed a novel automated dataset construction process and released a large-scale and open-source dataset for this task, named TEND (short for Text-to-NoSQL Dataset). Additionally, we designed a SLM (Small Language Model)-assisted and RAG (Retrieval-augmented Generation)-assisted multi-step framework called SMART, which is specifically designed for Text-to-NoSQL conversion. To ensure comprehensive evaluation of the models, we also introduced a detailed set of metrics that assess the model's performance from both the query itself and its execution results. Our experimental results demonstrate the effectiveness of our approach and establish a benchmark for future research in this emerging field. We believe that our contributions will pave the way for more accessible and intuitive interactions with NoSQL databases.
- Abstract(参考訳): NoSQLデータベースは、大規模で構造化されていない、半構造化されたデータを扱う上での卓越したパフォーマンスから、テクノロジ以外のユーザと複雑なデータベースクエリ間のギャップを埋めるために、ユーザフレンドリなインターフェースの必要性を強調している。
本稿では,自然言語クエリをNoSQLクエリに変換することを目的としたText-to-NoSQLタスクを提案する。
そこで我々は,この領域の研究を促進するために,新しい自動データセット構築プロセスを開発し,TEND(Text-to-NoSQL Datasetのショート)と呼ばれる大規模かつオープンソースなデータセットをリリースした。
さらに,SLM(Small Language Model)とRAG(Retrieval-augmented Generation)の多段階フレームワークSMARTを設計した。
モデルの総合的な評価を保証するため,クエリ自体と実行結果の両方からモデルの性能を評価するための詳細なメトリクスセットも導入した。
本研究では,本手法の有効性を実証し,今後の研究分野のベンチマークを立案する。
私たちは、私たちのコントリビューションが、NoSQLデータベースとのよりアクセスしやすく直感的なインタラクションの道を開くと信じています。
関連論文リスト
- Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement [1.392448435105643]
Text-to-sにより、専門家でないユーザは、自然言語クエリを使用してデータベースから要求された情報を取得することができる。
GPT4やT5のような現在の最先端(SOTA)モデルは、BIRDのような大規模ベンチマークで素晴らしいパフォーマンスを示している。
本稿では,テキスト・ツー・ス・パフォーマンスを向上させるためにSQL Qualityのみを必要とする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T17:21:51Z) - E-SQL: Direct Schema Linking via Question Enrichment in Text-to-SQL [1.187832944550453]
E-Seekは、直接スキーマリンクと候補述語拡張を通じてこれらの課題に対処するように設計された、新しいパイプラインである。
E-Seekは、関連するデータベース項目(テーブル、列、値)と条件を直接質問とsql構築計画に組み込むことで、自然言語クエリを強化し、クエリとデータベース構造の間のギャップを埋める。
総合的な評価は、E-Seekが競争性能、特に66.29%の実行精度で複雑なクエリに優れていることを示している。
論文 参考訳(メタデータ) (2024-09-25T09:02:48Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL [15.75829309721909]
自然言語の質問(text-to-)から正確なsqlを生成することは、長年にわたる課題である。
PLMはテキスト・ツー・タスクに利用され、有望な性能を実現している。
近年,大規模言語モデル (LLM) は自然言語理解において重要な機能を示している。
論文 参考訳(メタデータ) (2024-06-12T17:13:17Z) - Enhancing Text-to-SQL Translation for Financial System Design [5.248014305403357]
様々なNLPタスクの最先端技術を実現したLarge Language Models (LLMs) について検討する。
本稿では,関係クエリ間の類似性を適切に測定する2つの新しい指標を提案する。
論文 参考訳(メタデータ) (2023-12-22T14:34:19Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
テキストからコーパスへのパースの目的は、自然言語(NL)質問をデータベースが提供するエビデンスに基づいて、対応する構造化クエリ言語()に変換することである。
ディープニューラルネットワークは、入力NL質問から出力クエリへのマッピング関数を自動的に学習するニューラルジェネレーションモデルによって、このタスクを大幅に進歩させた。
論文 参考訳(メタデータ) (2022-08-29T14:24:13Z) - "What Do You Mean by That?" A Parser-Independent Interactive Approach
for Enhancing Text-to-SQL [49.85635994436742]
ループ内に人間を包含し,複数質問を用いてユーザと対話する,新規非依存型対話型アプローチ(PIIA)を提案する。
PIIAは、シミュレーションと人的評価の両方を用いて、限られたインタラクションターンでテキストとドメインのパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-11-09T02:14:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。