Quantum Error Mitigation for Sampling Algorithms
- URL: http://arxiv.org/abs/2502.11285v1
- Date: Sun, 16 Feb 2025 22:00:59 GMT
- Title: Quantum Error Mitigation for Sampling Algorithms
- Authors: Kecheng Liu, Zhenyu Cai,
- Abstract summary: We present a framework for applying any quantum error mitigation techniques to obtain the error-mitigated output distribution.
We also devised a way to sample from this distribution and constructed an explicit scheme for applying any QEM methods to quantum phase estimation.
- Score: 1.054316838380053
- License:
- Abstract: Recent experimental breakthroughs have signalled the imminent arrival of the early fault-tolerant era. However, for a considerable period in the foreseeable future, relying solely on quantum error correction for full error suppression will remain extremely challenging due to its substantial hardware overhead. Additional help from quantum error mitigation (QEM) is essential for bridging this gap towards achieving quantum advantage. The application of QEM has so far been restricted to expectation value estimation, leaving its extension to sampling-based algorithms -- which is expected to play a pivotal role in the early fault-tolerant era -- an unresolved challenge. In this work, we present a framework for applying any QEM techniques to obtain the error-mitigated output distribution, showing that this incurs no greater cost than estimating a single observable. We also devised a way to sample from this distribution and constructed an explicit scheme for applying any QEM methods to quantum phase estimation, which can be generalised to other sampling algorithms. Numerical experiments were conducted to validate the efficacy of these methods. We believe our methods significantly broaden the scope of QEM, extending its applicability to most algorithms of practical interest and forming a crucial step towards realising quantum advantage.
Related papers
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.
We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Exponentially tighter bounds on limitations of quantum error mitigation [2.936007114555107]
Quantum error mitigation has been proposed as a means to combat unwanted and unavoidable errors in near-term quantum computing.
In this work, we identify strong limitations to the degree to which quantum noise can be effectively undone' for larger system sizes.
arXiv Detail & Related papers (2022-10-20T18:12:42Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - The Accuracy vs. Sampling Overhead Trade-off in Quantum Error Mitigation
Using Monte Carlo-Based Channel Inversion [84.66087478797475]
Quantum error mitigation (QEM) is a class of promising techniques for reducing the computational error of variational quantum algorithms.
We consider a practical channel inversion strategy based on Monte Carlo sampling, which introduces additional computational error.
We show that when the computational error is small compared to the dynamic range of the error-free results, it scales with the square root of the number of gates.
arXiv Detail & Related papers (2022-01-20T00:05:01Z) - Reducing runtime and error in VQE using deeper and noisier quantum
circuits [0.0]
A core of many quantum algorithms including VQE, can be improved in terms of precision and accuracy by using a technique we call Robust Amplitude Estimation.
By using deeper, and therefore more error-prone, quantum circuits, we realize more accurate quantum computations in less time.
This technique may be used to speed up quantum computations into the regime of early fault-tolerant quantum computation.
arXiv Detail & Related papers (2021-10-20T17:11:29Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z) - Algorithmic Error Mitigation Scheme for Current Quantum Processors [0.0]
We present a hardware agnostic error mitigation algorithm for near term quantum processors inspired by the classical Lanczos method.
We demonstrate through numerical simulations and experiments on IBM Quantum hardware that the proposed scheme significantly increases the accuracy of cost functions evaluations.
arXiv Detail & Related papers (2020-08-25T09:48:20Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.