論文の概要: Optimized detection of cyber-attacks on IoT networks via hybrid deep learning models
- arxiv url: http://arxiv.org/abs/2502.11470v1
- Date: Mon, 17 Feb 2025 06:01:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:13:32.894387
- Title: Optimized detection of cyber-attacks on IoT networks via hybrid deep learning models
- Title(参考訳): ハイブリッドディープラーニングモデルによるIoTネットワーク上のサイバー攻撃の最適検出
- Authors: Ahmed Bensaoud, Jugal Kalita,
- Abstract要約: モノのインターネット(IoT)デバイスの急速な拡張は、サイバー攻撃のリスクを高めている。
本研究は,自己組織マップ(SOMs),ディープリーフネットワーク(DBNs),およびオートエンコーダを組み合わせた新たなアプローチを導入し,既知の,あるいはこれまで目に見えない攻撃パターンを検出する。
- 参考スコア(独自算出の注目度): 7.136205674624813
- License:
- Abstract: The rapid expansion of Internet of Things (IoT) devices has increased the risk of cyber-attacks, making effective detection essential for securing IoT networks. This work introduces a novel approach combining Self-Organizing Maps (SOMs), Deep Belief Networks (DBNs), and Autoencoders to detect known and previously unseen attack patterns. A comprehensive evaluation using simulated and real-world traffic data is conducted, with models optimized via Particle Swarm Optimization (PSO). The system achieves an accuracy of up to 99.99% and Matthews Correlation Coefficient (MCC) values exceeding 99.50%. Experiments on NSL-KDD, UNSW-NB15, and CICIoT2023 confirm the model's strong performance across diverse attack types. These findings suggest that the proposed method enhances IoT security by identifying emerging threats and adapting to evolving attack strategies.
- Abstract(参考訳): IoTデバイス(Internet of Things)の急速な拡張により、サイバー攻撃のリスクが増大し、IoTネットワークを保護する上で効果的な検出が不可欠になった。
本研究は,自己組織マップ(SOMs),ディープリーフネットワーク(DBNs),およびオートエンコーダを組み合わせた新たなアプローチを導入し,既知の,あるいはこれまで目に見えない攻撃パターンを検出する。
シミュレーションおよび実世界の交通データを用いた包括的評価を行い,Particle Swarm Optimization (PSO) によるモデル最適化を行った。
このシステムは99.99%の精度を達成し、マシューズ相関係数(MCC)は99.50%を超える。
NSL-KDD、UNSW-NB15、CICIoT2023の実験により、様々な攻撃タイプにわたるモデルの性能が確認された。
これらの結果は,新たな脅威を特定し,攻撃戦略の進化に適応することにより,IoTセキュリティを向上させることを示唆している。
関連論文リスト
- FedMSE: Federated learning for IoT network intrusion detection [0.0]
IoTの台頭によりサイバー攻撃面が拡大し、データ可用性、計算リソース、転送コスト、特にプライバシ保護に関する懸念から、従来の集中型機械学習手法が不十分になった。
Shrink AutoencoderとCentroid One-class Classifier(SAE-CEN)を組み合わせた半教師付きフェデレーション学習モデルを開発した。
このアプローチは,通常のネットワークデータを効果的に表現し,分散戦略における異常を正確に識別することにより侵入検知性能を向上させる。
論文 参考訳(メタデータ) (2024-10-18T02:23:57Z) - Enhancing Intrusion Detection in IoT Environments: An Advanced Ensemble Approach Using Kolmogorov-Arnold Networks [3.1309870454820277]
本稿では,KAN(Kolmogorov-Arnold Networks)とXGBoostアルゴリズムを組み合わせたハイブリッド侵入検知システムを提案する。
提案したIDSは,学習可能なアクティベーション関数を用いてデータ内の複雑な関係をモデル化し,XGBoostの強力なアンサンブル学習手法と併用する。
実験により,我々のハイブリッドIDSは,良性行動と悪意行動の区別において,99%以上の精度で検出できることがわかった。
論文 参考訳(メタデータ) (2024-08-28T15:58:49Z) - Beyond Detection: Leveraging Large Language Models for Cyber Attack Prediction in IoT Networks [4.836070911511429]
本稿では,Long Short Term Memory(LSTM)ネットワークとLarge Language Models(LLM)を組み合わせた新しいネットワーク侵入予測フレームワークを提案する。
我々のフレームワークは、CICIoT2023 IoT攻撃データセットに基づいて評価され、予測能力の大幅な改善を示し、全体的な精度は98%である。
論文 参考訳(メタデータ) (2024-08-26T06:57:22Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
提案モデルは,畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)ディープラーニング(DL)モデルを組み合わせて構成する。
この融合により、IoTトラフィックをバイナリカテゴリ、良性、悪意のあるアクティビティに検出し、分類することが可能になる。
提案モデルの精度は98.42%,最小損失は0.0275である。
論文 参考訳(メタデータ) (2024-05-28T22:12:15Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Interpolated Joint Space Adversarial Training for Robust and
Generalizable Defenses [82.3052187788609]
敵の訓練(AT)は、敵の攻撃に対する最も信頼できる防御の1つと考えられている。
近年の研究では、新たな脅威モデルの下での対向サンプルによる一般化の改善が示されている。
我々は、JSTM(Joint Space Threat Model)と呼ばれる新しい脅威モデルを提案する。
JSTMでは,新たな敵攻撃・防衛手法が開発されている。
論文 参考訳(メタデータ) (2021-12-12T21:08:14Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Detecting Botnet Attacks in IoT Environments: An Optimized Machine
Learning Approach [8.641714871787595]
機械学習(ML)は、IoTデバイスやネットワークで生成され利用可能な大量のデータのために、潜在的なソリューションの1つとして浮上しました。
本稿では,IoTデバイスに対する攻撃を効果的かつ効率的に検出するMLベースのフレームワークを提案する。
実験の結果,提案フレームワークは高い検出精度,精度,リコール,Fスコアを有することがわかった。
論文 参考訳(メタデータ) (2020-12-16T16:39:55Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturbは、ディープニューラルネットワークの対角的堅牢性を改善するために、エンドツーエンドの機能摂動学習アプローチである。
予測最大化にインスパイアされ、ネットワークと雑音パラメータを連続的にトレーニングするために、交互にバックプロパゲーショントレーニングアルゴリズムが導入された。
論文 参考訳(メタデータ) (2020-03-02T18:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。