論文の概要: Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices
- arxiv url: http://arxiv.org/abs/2406.02768v1
- Date: Tue, 4 Jun 2024 20:36:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 22:47:37.799588
- Title: Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices
- Title(参考訳): 資源拘束型IoTデバイス用軽量CNN-BiLSTMによる侵入検知システム
- Authors: Mohammed Jouhari, Mohsen Guizani,
- Abstract要約: 侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSのデプロイを困難にしている。
軽量CNNと双方向LSTM(BiLSTM)を組み合わせたハイブリッドCNNアーキテクチャを提案し,UNSW-NB15データセット上でのIDSの性能向上を図る。
- 参考スコア(独自算出の注目度): 38.16309790239142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems. It is not surprising that the same technology is being applied to secure Internet of Things (IoT) networks from cyber threats. The limited computational resources available on IoT devices make it challenging to deploy conventional computing-based IDSs. The IDSs designed for IoT environments must also demonstrate high classification performance, utilize low-complexity models, and be of a small size. Despite significant progress in IoT-based intrusion detection, developing models that both achieve high classification performance and maintain reduced complexity remains challenging. In this study, we propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset. The proposed model is specifically designed to run onboard resource-constrained IoT devices and meet their computation capability requirements. Despite the complexity of designing a model that fits the requirements of IoT devices and achieves higher accuracy, our proposed model outperforms the existing research efforts in the literature by achieving an accuracy of 97.28\% for binary classification and 96.91\% for multiclassification.
- Abstract(参考訳): 侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
サイバー脅威からモノのインターネット(IoT)ネットワークに同じ技術が適用されていることは驚くべきことではない。
IoTデバイス上で利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSのデプロイを困難にしている。
IoT環境用に設計されたIDSは、高い分類性能を示し、低複雑さモデルを使用し、小さなサイズでなければならない。
IoTベースの侵入検出の大幅な進歩にもかかわらず、高い分類性能と複雑さの低減を両立するモデルの開発は依然として困難である。
本研究では,UNSW-NB15データセット上でのIDSの性能を向上させるために,軽量CNNと双方向LSTM(BiLSTM)を組み合わせたハイブリッドCNNアーキテクチャを提案する。
提案するモデルは、リソース制約のあるIoTデバイス上で動作し、その計算能力要件を満たすように設計されている。
提案モデルは,IoTデバイスの要件に適合し,精度の高いモデルの設計の複雑さにもかかわらず,バイナリ分類では97.28\%,マルチ分類では96.91\%の精度を達成し,文献における既存の研究成果を上回っている。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Efficient Intrusion Detection: Combining $χ^2$ Feature Selection with CNN-BiLSTM on the UNSW-NB15 Dataset [2.239394800147746]
侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSをデプロイする上での課題である。
本稿では、軽量畳み込みニューラルネットワーク(CNN)と双方向長短期記憶(BiLSTM)を組み合わせた効果的なIDSモデルを提案する。
論文 参考訳(メタデータ) (2024-07-20T17:41:16Z) - A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
本稿では,Deep Learning-integrated Convolutional Neural Networks (CNN) とLong Short-Term Memory (LSTM) ネットワークを用いたモノのインターネット(IoT)環境侵入検知システム(IDS)の革新的な設計を提案する。
われわれのモデルはCICIDS 2017データセットに基づいて、ネットワークトラフィックを良性または悪意のいずれかとして分類する精度99.52%を達成した。
論文 参考訳(メタデータ) (2024-06-18T08:42:51Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
提案モデルは,畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)ディープラーニング(DL)モデルを組み合わせて構成する。
この融合により、IoTトラフィックをバイナリカテゴリ、良性、悪意のあるアクティビティに検出し、分類することが可能になる。
提案モデルの精度は98.42%,最小損失は0.0275である。
論文 参考訳(メタデータ) (2024-05-28T22:12:15Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Constrained Twin Variational Auto-Encoder for Intrusion Detection in IoT
Systems [30.16714420093091]
侵入検知システム(IDS)は、悪意のある攻撃から何十億ものIoTデバイスを保護する上で重要な役割を果たす。
本稿では,CTVAE(Constrained Twin Variational Auto-Encoder)と呼ばれる新しいディープニューラルネットワーク/アーキテクチャを提案する。
CTVAEは、最先端の機械学習および表現学習方法と比較して、精度と検出攻撃におけるFscoreの約1%を向上することができる。
論文 参考訳(メタデータ) (2023-12-05T04:42:04Z) - Revolutionizing Cyber Threat Detection with Large Language Models: A
privacy-preserving BERT-based Lightweight Model for IoT/IIoT Devices [3.340416780217405]
本稿では,インターネットネットワークにおけるサイバー脅威検出にBERT(Bidirectional Representations from Transformers)モデルを活用する,新たなアーキテクチャであるSecurityBERTを提案する。
我々の研究は、SecurityBERTがサイバー脅威検出において、畳み込みニューラルネットワーク(CNNIoT)やリカレントニューラルネットワーク(IoTRNN)など、従来の機械学習(ML)とディープラーニング(DL)の手法より優れていることを示した。
SecurityBERTは、14の異なる攻撃タイプを特定することで、98.2%の全体的な精度を達成し、ハイブリッドソリューションによって設定された過去の記録を上回った。
論文 参考訳(メタデータ) (2023-06-25T15:04:21Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。