Optimized detection of cyber-attacks on IoT networks via hybrid deep learning models
- URL: http://arxiv.org/abs/2502.11470v1
- Date: Mon, 17 Feb 2025 06:01:06 GMT
- Title: Optimized detection of cyber-attacks on IoT networks via hybrid deep learning models
- Authors: Ahmed Bensaoud, Jugal Kalita,
- Abstract summary: The rapid expansion of Internet of Things (IoT) devices has increased the risk of cyber-attacks.
This work introduces a novel approach combining Self-Organizing Maps (SOMs), Deep Belief Networks (DBNs), and Autoencoders to detect known and previously unseen attack patterns.
- Score: 7.136205674624813
- License:
- Abstract: The rapid expansion of Internet of Things (IoT) devices has increased the risk of cyber-attacks, making effective detection essential for securing IoT networks. This work introduces a novel approach combining Self-Organizing Maps (SOMs), Deep Belief Networks (DBNs), and Autoencoders to detect known and previously unseen attack patterns. A comprehensive evaluation using simulated and real-world traffic data is conducted, with models optimized via Particle Swarm Optimization (PSO). The system achieves an accuracy of up to 99.99% and Matthews Correlation Coefficient (MCC) values exceeding 99.50%. Experiments on NSL-KDD, UNSW-NB15, and CICIoT2023 confirm the model's strong performance across diverse attack types. These findings suggest that the proposed method enhances IoT security by identifying emerging threats and adapting to evolving attack strategies.
Related papers
- Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset [0.0]
Intrusion Detection Systems (IDS) are crucial for mitigating these threats.
Recent advancements in Machine Learning (ML) offer promising avenues for improvement.
This research explores a hybrid approach, combining several standalone ML models.
arXiv Detail & Related papers (2025-02-17T23:41:10Z) - MDHP-Net: Detecting Injection Attacks on In-vehicle Network using Multi-Dimensional Hawkes Process and Temporal Model [44.356505647053716]
In this paper, we consider a specific type of cyberattack known as the injection attack.
These injection attacks have effect over time, gradually manipulating network traffic and disrupting the vehicle's normal functioning.
We propose an injection attack detector, MDHP-Net, which integrates optimal MDHP parameters with MDHP-LSTM blocks to enhance temporal feature extraction.
arXiv Detail & Related papers (2024-11-15T15:05:01Z) - Enhancing Intrusion Detection in IoT Environments: An Advanced Ensemble Approach Using Kolmogorov-Arnold Networks [3.1309870454820277]
This paper introduces a hybrid Intrusion Detection System (IDS) that combines Kolmogorov-Arnold Networks (KANs) with the XGBoost algorithm.
Our proposed IDS leverages the unique capabilities of KANs, which utilize learnable activation functions to model complex relationships within data, alongside the powerful ensemble learning techniques of XGBoost.
Experimental evaluations demonstrate that our hybrid IDS achieves an impressive detection accuracy exceeding 99% in distinguishing between benign and malicious activities.
arXiv Detail & Related papers (2024-08-28T15:58:49Z) - Beyond Detection: Leveraging Large Language Models for Cyber Attack Prediction in IoT Networks [4.836070911511429]
This paper proposes a novel network intrusion prediction framework that combines Large Language Models (LLMs) with Long Short Term Memory (LSTM) networks.
Our framework, evaluated on the CICIoT2023 IoT attack dataset, demonstrates a significant improvement in predictive capabilities, achieving an overall accuracy of 98%.
arXiv Detail & Related papers (2024-08-26T06:57:22Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices make it challenging to deploy conventional computing-based IDSs.
We propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset.
arXiv Detail & Related papers (2024-06-04T20:36:21Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
Our proposed model consists on a combination of convolutional neural network (CNN) and long short-term memory (LSTM) deep learning (DL) models.
This fusion facilitates the detection and classification of IoT traffic into binary categories, benign and malicious activities.
Our proposed model achieves an accuracy rate of 98.42%, accompanied by a minimal loss of 0.0275.
arXiv Detail & Related papers (2024-05-28T22:12:15Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Automated Identification of Vulnerable Devices in Networks using Traffic
Data and Deep Learning [30.536369182792516]
Device-type identification combined with data from vulnerability databases can pinpoint vulnerable IoT devices in a network.
We present and evaluate two deep learning approaches to the reliable IoT device-type identification.
arXiv Detail & Related papers (2021-02-16T14:49:34Z) - Detecting Botnet Attacks in IoT Environments: An Optimized Machine
Learning Approach [8.641714871787595]
Machine learning (ML) has emerged as one potential solution due to the abundance of data generated and available for IoT devices and networks.
This paper proposes an optimized ML-based framework to detect attacks on IoT devices in an effective and efficient manner.
Experimental results show that the proposed optimized framework has a high detection accuracy, precision, recall, and F-score.
arXiv Detail & Related papers (2020-12-16T16:39:55Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
Internet of things (IoT) devices tend to have many vulnerabilities which can be exploited by an attacker.
Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner.
We present a distributed IoT simulation platform, which consists of 48 Raspberry Pis.
arXiv Detail & Related papers (2020-06-18T14:50:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.