Beyond Detection: Leveraging Large Language Models for Cyber Attack Prediction in IoT Networks
- URL: http://arxiv.org/abs/2408.14045v1
- Date: Mon, 26 Aug 2024 06:57:22 GMT
- Title: Beyond Detection: Leveraging Large Language Models for Cyber Attack Prediction in IoT Networks
- Authors: Alaeddine Diaf, Abdelaziz Amara Korba, Nour Elislem Karabadji, Yacine Ghamri-Doudane,
- Abstract summary: This paper proposes a novel network intrusion prediction framework that combines Large Language Models (LLMs) with Long Short Term Memory (LSTM) networks.
Our framework, evaluated on the CICIoT2023 IoT attack dataset, demonstrates a significant improvement in predictive capabilities, achieving an overall accuracy of 98%.
- Score: 4.836070911511429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, numerous large-scale cyberattacks have exploited Internet of Things (IoT) devices, a phenomenon that is expected to escalate with the continuing proliferation of IoT technology. Despite considerable efforts in attack detection, intrusion detection systems remain mostly reactive, responding to specific patterns or observed anomalies. This work proposes a proactive approach to anticipate and mitigate malicious activities before they cause damage. This paper proposes a novel network intrusion prediction framework that combines Large Language Models (LLMs) with Long Short Term Memory (LSTM) networks. The framework incorporates two LLMs in a feedback loop: a fine-tuned Generative Pre-trained Transformer (GPT) model for predicting network traffic and a fine-tuned Bidirectional Encoder Representations from Transformers (BERT) for evaluating the predicted traffic. The LSTM classifier model then identifies malicious packets among these predictions. Our framework, evaluated on the CICIoT2023 IoT attack dataset, demonstrates a significant improvement in predictive capabilities, achieving an overall accuracy of 98%, offering a robust solution to IoT cybersecurity challenges.
Related papers
- FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Revolutionizing Cyber Threat Detection with Large Language Models: A
privacy-preserving BERT-based Lightweight Model for IoT/IIoT Devices [3.340416780217405]
This paper presents SecurityBERT, a novel architecture that leverages the Bidirectional Representations from Transformers (BERT) model for cyber threat detection in IoT networks.
Our research demonstrates that SecurityBERT outperforms traditional Machine Learning (ML) and Deep Learning (DL) methods, such as Convolutional Neural Networks (CNNIoTs) or Recurrent Neural Networks (IoTRNNs) in cyber threat detection.
SecurityBERT achieved an impressive 98.2% overall accuracy in identifying fourteen distinct attack types, surpassing previous records set by hybrid solutions.
arXiv Detail & Related papers (2023-06-25T15:04:21Z) - Detecting Anomalous Microflows in IoT Volumetric Attacks via Dynamic
Monitoring of MUD Activity [1.294952045574009]
Anomaly-based detection methods are promising in finding new attacks.
There are certain practical challenges like false-positive alarms, hard to explain, and difficult to scale cost-effectively.
In this paper, we use SDN to enforce and monitor the expected behaviors of each IoT device.
arXiv Detail & Related papers (2023-04-11T05:17:51Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - Intrusion Detection in Internet of Things using Convolutional Neural
Networks [4.718295605140562]
We propose a novel solution to the intrusion attacks against IoT devices using CNNs.
The data is encoded as the convolutional operations to capture the patterns from the sensors data along time.
The experimental results show significant improvement in both true positive rate and false positive rate compared to the baseline using LSTM.
arXiv Detail & Related papers (2022-11-18T07:27:07Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
This paper proposes a time series prediction framework using aggregated traffic signal and loop detector data.
We utilize state-of-the-art machine learning models to predict future signal phases' duration.
Results based on an empirical data set from a fully-actuated signal control system in Zurich, Switzerland, show that machine learning models outperform conventional prediction methods.
arXiv Detail & Related papers (2022-08-24T07:50:43Z) - Intrusion Detection using Network Traffic Profiling and Machine Learning
for IoT [2.309914459672557]
A single compromised device can have an impact on the whole network and lead to major security and physical damages.
This paper explores the potential of using network profiling and machine learning to secure IoT against cyber-attacks.
arXiv Detail & Related papers (2021-09-06T15:30:10Z) - Semi-supervised Variational Temporal Convolutional Network for IoT
Communication Multi-anomaly Detection [3.3659034873495632]
Internet of Things (IoT) devices are constructed to build a huge communications network.
These devices are insecure in reality, it means that the communications network are exposed by the attacker.
In this paper, we propose SS-VTCN, a semi-supervised network for IoT multiple anomaly detection.
arXiv Detail & Related papers (2021-04-05T08:51:24Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend.
We propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation.
arXiv Detail & Related papers (2020-11-23T05:42:20Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
Internet of things (IoT) devices tend to have many vulnerabilities which can be exploited by an attacker.
Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner.
We present a distributed IoT simulation platform, which consists of 48 Raspberry Pis.
arXiv Detail & Related papers (2020-06-18T14:50:08Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.