論文の概要: Balanced Multi-Factor In-Context Learning for Multilingual Large Language Models
- arxiv url: http://arxiv.org/abs/2502.11495v1
- Date: Mon, 17 Feb 2025 06:56:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:31.714867
- Title: Balanced Multi-Factor In-Context Learning for Multilingual Large Language Models
- Title(参考訳): 多言語大言語モデルのためのバランス付き多要素インコンテキスト学習
- Authors: Masahiro Kaneko, Alham Fikri Aji, Timothy Baldwin,
- Abstract要約: MLLM(Multilingual Large Language Model)は,言語間知識伝達をパラメータ更新なしで活用することにより,文脈内学習(ICL)を活用して高い性能を実現する。
1) 意味的類似性,(2) 言語的アライメント,(3) 言語固有のパフォーマンスの3つの要因が多言語ICLに影響を与える。
我々は,これらの因子を定量化し,最適にバランスをとる手法として,バランスの取れた多要素ICL(textbfBMF-ICL)を提案する。
- 参考スコア(独自算出の注目度): 53.38288894305388
- License:
- Abstract: Multilingual large language models (MLLMs) are able to leverage in-context learning (ICL) to achieve high performance by leveraging cross-lingual knowledge transfer without parameter updates. However, their effectiveness is highly sensitive to example selection, particularly in multilingual settings. Based on the findings of existing work, three key factors influence multilingual ICL: (1) semantic similarity, (2) linguistic alignment, and (3) language-specific performance. However, existing approaches address these factors independently, without explicitly disentangling their combined impact, leaving optimal example selection underexplored. To address this gap, we propose balanced multi-factor ICL (\textbf{BMF-ICL}), a method that quantifies and optimally balances these factors for improved example selection. Experiments on mCSQA and TYDI across four MLLMs demonstrate that BMF-ICL outperforms existing methods. Further analysis highlights the importance of incorporating all three factors and the importance of selecting examples from multiple languages.
- Abstract(参考訳): MLLM(Multilingual Large Language Model)は,言語間知識伝達をパラメータ更新なしで活用することにより,文脈内学習(ICL)を活用して高い性能を実現する。
しかし、それらの効果は、特に多言語設定において、例選択に非常に敏感である。
既存の研究の結果から,(1)意味的類似性,(2)言語的アライメント,(3)言語固有のパフォーマンスの3つの要因が多言語ICLに影響を与えることが示唆された。
しかし、既存のアプローチはこれらの要因を独立に解決し、組み合わせた影響を明示的に排除し、最適なサンプル選択は未探索のままである。
このギャップに対処するために、これらの因子を定量化し、最適にバランスをとる手法であるバランス付き多要素ICL(\textbf{BMF-ICL})を提案する。
4つのMLLMにおけるmCSQAとTYDIの実験は、BMF-ICLが既存の手法より優れていることを示した。
さらに分析は、3つの要素をすべて取り入れることの重要性と、複数の言語から例を選択することの重要性を強調している。
関連論文リスト
- Qtok: A Comprehensive Framework for Evaluating Multilingual Tokenizer Quality in Large Language Models [0.0]
トークン化の品質は、モデルが多様な言語を効果的に扱う能力に大きな影響を及ぼす可能性がある。
Qtokは、多言語環境でのパフォーマンスに特に重点を置いて、トークン化ツールの品質を評価するために設計されたツールである。
Qtokはこれらのメトリクスを適用して、58の公開モデルから13の異なるトークン化子を評価し、異なる言語コンテキストでアウトプットを分析する。
論文 参考訳(メタデータ) (2024-10-16T19:34:34Z) - Effective Demonstration Annotation for In-Context Learning via Language Model-Based Determinantal Point Process [45.632012199451275]
In-context Learning(ICL)は、インプット・アウトプット・ペアを通じてマッピングを学習する、数発の学習パラダイムである。
既存の作業は大規模にラベル付けされたサポートセットに大きく依存しているため、現実的なシナリオでは必ずしも実現できない。
言語モデルに基づく決定点プロセス(LM-DPP)を導入し、最適選択のための未ラベルインスタンスの不確かさと多様性を同時に検討する。
論文 参考訳(メタデータ) (2024-08-04T18:08:15Z) - Multilingual Blending: LLM Safety Alignment Evaluation with Language Mixture [6.17896401271963]
我々は,様々な大規模言語モデルの安全性アライメントを評価するために,混合言語クエリ応答方式であるMultilingual Blendingを導入する。
本稿では,多言語ブレンディングの有効性に影響を及ぼす可能性のある,言語可用性,形態学,言語ファミリーなどの言語パターンについて検討する。
論文 参考訳(メタデータ) (2024-07-10T03:26:15Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Analyzing and Adapting Large Language Models for Few-Shot Multilingual
NLU: Are We There Yet? [82.02076369811402]
教師付きファインチューニング(SFT)、教師付きインストラクションチューニング(SIT)、インコンテキストラーニング(ICL)は、3つの代替であり、事実上の標準的アプローチである。
提案手法は,6つの高・低リソース言語,3つの異なるNLUタスク,多種多様な言語とドメインのセットアップを用いて,3つのアプローチを網羅的かつ体系的に比較する。
そこで本研究では,教師あり指導のチューニングが,性能とリソース要件の最良のトレードオフであることを示す。
論文 参考訳(メタデータ) (2024-03-04T10:48:13Z) - Tokenizer Choice For LLM Training: Negligible or Crucial? [30.33170936148845]
24個の単言語LLMと多言語LLMを学習し,トークン化選択が大規模言語モデル(LLM)の下流性能に与える影響について検討した。
トークン化ツールの選択は、ダウンストリームのパフォーマンスとトレーニングコストに大きな影響を与えます。
ヨーロッパの5言語で訓練された多言語トークン化器は,英語と比較して語彙サイズが3倍に大きくなることが示唆された。
論文 参考訳(メタデータ) (2023-10-12T22:44:19Z) - A Multi-level Supervised Contrastive Learning Framework for Low-Resource
Natural Language Inference [54.678516076366506]
自然言語推論(NLI)は、自然言語理解において、ますます重要な課題である。
本稿では,低リソースな自然言語推論のためのマルチSCLという,マルチレベルの教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-31T05:54:18Z) - Cross-Lingual Ability of Multilingual Masked Language Models: A Study of
Language Structure [54.01613740115601]
本稿では,構成順序,構成,単語共起の3つの言語特性について検討する。
我々の主な結論は、構成順序と単語共起の寄与は限定的である一方、構成は言語間移動の成功にとってより重要であるということである。
論文 参考訳(メタデータ) (2022-03-16T07:09:35Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。