An ultra-compact deterministic source of maximally entangled photon pairs
- URL: http://arxiv.org/abs/2502.11623v1
- Date: Mon, 17 Feb 2025 10:07:54 GMT
- Title: An ultra-compact deterministic source of maximally entangled photon pairs
- Authors: M. Langer, P. Ruchka, A. Rahimi, S. Jakovljevic, Y. G. Zena, A. Danilov, M. Pal, R. Bassoli, F. H. P. Fitzek, O. G. Schmidt, H. Giessen, C. Hopfmann,
- Abstract summary: We present an ultra-compact source of maximally entangled on-demand photon pairs.
Results are based on coupling of single GaAs quantum dots embedded in monolithic micro-lenses to a single-mode fiber.
- Score: 0.0
- License:
- Abstract: We present an ultra-compact source of maximally entangled on-demand photon pairs. Our results are based on coupling of single GaAs quantum dots that are embedded in monolithic micro-lenses to a single-mode fiber with directly attached to 3D-printed micro-optics (NA of 0.6) inside a cryogenic environment. This approach, which is geared towards future integration into industrial environments, yields state-of-the-art entangled photon pair creation performance while retaining flexibility and adjustability required for long-term operation of such a device - all while dramatically reducing the overall system footprint. We demonstrate near diffraction-limited performance and hyperspectral imaging utilizing a 3D-printed micro-objective with a full width at half maximum resolution limit of 604(16) nm when operating the system at a cryogenic temperature of 3.8 K. Furthermore, we prove that this system can be used to achieve single photon emission rates of 392(20) kHz at a 76 MHz pump rate and purities of 99.2(5) % using two-photon resonant excitation. Utilizing the exciton-biexciton emission cascade available in GaAs quantum dots under resonant excitation, near maximally entangled photon pairs with peak entanglement negatives 2n of 0.96(2) in a 4 ps time window, and 0.81(1) when averaged over one exciton lifetime, are demonstrated.
Related papers
- Integrated Mode-Hop-Free Tunable Lasers at 780 nm for Chip-Scale Classical and Quantum Photonic Applications [1.5150335879032768]
Integrated continuously tunable laser in a heterogeneous gallium arsenide-on-silicon nitride (GaAs-on-SiN) platform.
Laser emits in the far-red radiation spectrum near 780 nm, with 20 nm tuning range, 6 kHz intrinsic linewidth, and a >40 dB side-mode suppression ratio.
The proposed integrated laser holds promise for a broader spectrum of both classical and quantum applications in the visible range.
arXiv Detail & Related papers (2024-07-22T07:33:34Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Filter-free high-performance single photon emission from a quantum dot in a Fabry-Perot microcavity [11.420650731006665]
Resonant excitation with Purcell-enhanced single quantum dots (QDs) is a prominent strategy for realizing high performance solid-state single photon sources.
Traditionally, this involves polarization filtering, which limits the achievable polarization directions and the scalability of photonic states.
We have successfully tackled this challenge by employing spatially-orthogonal resonant excitation of QDs, deterministically coupled to monolithic Fabry-Perot microcavities.
The resulting source produces single photons with a simultaneous high extraction efficiency of 0.87, purity of 0.9045(4), and indistinguishability of 0.963(4).
arXiv Detail & Related papers (2024-02-18T15:31:09Z) - A Highly Efficient and Pure Few-Photon Source on Chip [4.016925380411567]
We report on multi-photon statistics of correlated twin beams produced in a periodic poled micro-ring resonator on thin-film lithium niobate.
The findings of our research highlight the potential of this nanophotonic platform for generating non-classical, few-photon states.
arXiv Detail & Related papers (2023-09-26T19:54:57Z) - Room Temperature Fiber-Coupled single-photon devices based on Colloidal
Quantum Dots and SiV centers in Back Excited Nanoantennas [91.6474995587871]
Directionality is achieved with a hybrid metal-dielectric bullseye antenna.
Back-excitation is permitted by placement of the emitter at or in a sub-wavelength hole positioned at the bullseye center.
arXiv Detail & Related papers (2023-03-19T14:54:56Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Position-controlled Telecom Single Photon Emitters Operating at Elevated
Temperatures [0.0]
We demonstrate high purity single photon emission at 1.31 mum using deterministically positioned InP photonic waveguide nanowires containing single InAsP quantum dot-in-a-rod structures.
These results are a promising step towards scalably fabricating telecom single photon emitters that operate under relaxed cooling requirements.
arXiv Detail & Related papers (2022-10-23T19:43:07Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Spectral multiplexing of telecom emitters with stable transition
frequency [68.8204255655161]
coherent emitters can be entangled over large distances using photonic channels.
We observe around 100 individual erbium emitters using a Fabry-Perot resonator with an embedded 19 micrometer thin crystalline membrane.
Our results constitute an important step towards frequency-multiplexed quantum-network nodes operating directly at a telecommunication wavelength.
arXiv Detail & Related papers (2021-10-18T15:39:07Z) - Entangled photon pairs from quantum dots embedded in a self-aligned
cavity [0.2493740042317776]
We introduce a scalable photonic platform that enables efficient generation of entangled photon pairs from a semiconductor quantum dot.
We experimentally show collection efficiency of 0.17 combined with a Purcell enhancement of up to 1.7 in the pair emission process.
arXiv Detail & Related papers (2020-10-04T11:55:58Z) - Coherent and Purcell-enhanced emission from erbium dopants in a
cryogenic high-Q resonator [68.8204255655161]
A 19 micrometer thin erbium-doped crystal is integrated into a cryogenic Fabry-Perot resonator with a quality factor of nine million.
Our system enables coherent and efficient nodes for long-distance quantum networks.
arXiv Detail & Related papers (2020-06-25T07:53:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.