論文の概要: Component-aware Unsupervised Logical Anomaly Generation for Industrial Anomaly Detection
- arxiv url: http://arxiv.org/abs/2502.11712v1
- Date: Mon, 17 Feb 2025 11:54:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:10:38.722682
- Title: Component-aware Unsupervised Logical Anomaly Generation for Industrial Anomaly Detection
- Title(参考訳): 産業用異常検出のためのコンポーネント対応非教師付き論理異常生成
- Authors: Xuan Tong, Yang Chang, Qing Zhao, Jiawen Yu, Boyang Wang, Junxiong Lin, Yuxuan Lin, Xinji Mai, Haoran Wang, Zeng Tao, Yan Wang, Wenqiang Zhang,
- Abstract要約: 異常検出は、製品の品質を確保し、自動化プロセスの効率を向上させるために、工業生産において重要である。
最近の生成モデルは、しばしば偽陽性を増大させる非現実的な異常を発生させるか、訓練のために現実世界の異常サンプルを必要とする。
本稿では,論理的異常生成のギャップに対処するコンポーネント・アウェアで教師なしのフレームワークであるComGENを提案する。
- 参考スコア(独自算出の注目度): 31.27483219228598
- License:
- Abstract: Anomaly detection is critical in industrial manufacturing for ensuring product quality and improving efficiency in automated processes. The scarcity of anomalous samples limits traditional detection methods, making anomaly generation essential for expanding the data repository. However, recent generative models often produce unrealistic anomalies increasing false positives, or require real-world anomaly samples for training. In this work, we treat anomaly generation as a compositional problem and propose ComGEN, a component-aware and unsupervised framework that addresses the gap in logical anomaly generation. Our method comprises a multi-component learning strategy to disentangle visual components, followed by subsequent generation editing procedures. Disentangled text-to-component pairs, revealing intrinsic logical constraints, conduct attention-guided residual mapping and model training with iteratively matched references across multiple scales. Experiments on the MVTecLOCO dataset confirm the efficacy of ComGEN, achieving the best AUROC score of 91.2%. Additional experiments on the real-world scenario of Diesel Engine and widely-used MVTecAD dataset demonstrate significant performance improvements when integrating simulated anomalies generated by ComGEN into automated production workflows.
- Abstract(参考訳): 異常検出は、製品の品質を確保し、自動化プロセスの効率を向上させるために、工業生産において重要である。
異常サンプルの不足は従来の検出方法を制限するため、データリポジトリの拡張には異常生成が不可欠である。
しかし、最近の生成モデルは、しばしば偽陽性を増大させる非現実的な異常を生じさせるか、訓練のために現実世界の異常サンプルを必要とする。
本研究では, 構成問題として異常生成を扱い, 論理的異常生成のギャップに対処するコンポーネント・アウェアで教師なしのフレームワークであるComGENを提案する。
本手法は,視覚成分をアンタングル化する多成分学習戦略と,それに続く世代編集手順から構成される。
アンタングル化されたテキストとコンポーネントのペアは、固有の論理的制約を明らかにし、注意誘導残差マッピングとモデルトレーニングを複数のスケールで反復的にマッチングした参照で実施する。
MVTecLOCOデータセットの実験はComGENの有効性を確認し、91.2%のAUROCスコアを達成した。
ディーゼルエンジンと広く使用されているMVTecADデータセットの現実シナリオに関する追加実験は、ComGENによって生成されたシミュレーションされた異常を自動運用ワークフローに統合する際の、大幅なパフォーマンス向上を示している。
関連論文リスト
- Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
データ拡張のためのトレーニング不要な拡散型In-Distribution Anomaly GenerationパイプラインであるDIAGを紹介する。
従来の画像生成技術とは異なり、我々は、ドメインの専門家がモデルにマルチモーダルガイダンスを提供する、Human-in-the-loopパイプラインを実装している。
我々は、挑戦的なKSDD2データセットに対する最先端データ拡張アプローチに関して、DIAGの有効性と汎用性を実証する。
論文 参考訳(メタデータ) (2024-07-04T14:28:52Z) - Unseen Visual Anomaly Generation [13.456240733175767]
Anomaly Anything (AnomalyAny) は、多様で現実的な異常を発生させる新しいフレームワークである。
テスト期間中に1つの通常のサンプルを条件付けすることで、AnomalyAnyはテキスト記述を伴う任意のオブジェクトタイプに対して、目に見えない異常を生成することができる。
論文 参考訳(メタデータ) (2024-06-03T07:58:09Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
製造業において異常検査が重要な役割を担っている。
既存の異常検査手法は、異常データが不足しているため、その性能に制限がある。
本稿では,新しい拡散型マイクロショット異常生成モデルであるAnomalyDiffusionを提案する。
論文 参考訳(メタデータ) (2023-12-10T05:13:40Z) - ADT: Agent-based Dynamic Thresholding for Anomaly Detection [4.356615197661274]
本稿では,エージェントベースの動的しきい値処理(ADT)フレームワークを提案する。
本研究では,自動エンコーダを用いて特徴表現を取得し,複雑な入力データに対する異常スコアを生成する。
ADTはオートエンコーダの異常スコアを利用して閾値を適応的に調整することができる。
論文 参考訳(メタデータ) (2023-12-03T19:07:30Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Imbalanced Data Classification via Generative Adversarial Network with
Application to Anomaly Detection in Additive Manufacturing Process [5.225026952905702]
本稿では, 追加製造プロセスイメージセンサデータを用いたGAN(Generative Adversarial Network)に基づく新しいデータ拡張手法を提案する。
多様性があり高品質な生成されたサンプルは、分類器にバランスの取れたトレーニングデータを提供します。
提案手法の有効性は, オープンソースデータと実世界のケーススタディの両方を用いて, ポリマーおよび金属AMプロセスで検証した。
論文 参考訳(メタデータ) (2022-10-28T16:08:21Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
本稿では, 産業環境における異常検出に対する弱い制御手法を提案する。
これらのアプローチでは、Digital Twinを使用して、機械の通常の動作をシミュレートするトレーニングデータセットを生成する。
提案手法の性能を,実世界のデータセットに応用した様々な最先端の異常検出アルゴリズムと比較した。
論文 参考訳(メタデータ) (2020-11-12T10:15:56Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。