論文の概要: ChineseSimpleVQA -- "See the World, Discover Knowledge": A Chinese Factuality Evaluation for Large Vision Language Models
- arxiv url: http://arxiv.org/abs/2502.11718v3
- Date: Wed, 26 Feb 2025 13:56:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:54:39.263143
- Title: ChineseSimpleVQA -- "See the World, Discover Knowledge": A Chinese Factuality Evaluation for Large Vision Language Models
- Title(参考訳): ChineseSimpleVQA -- "See the World, Discover Knowledge": 大規模視覚言語モデルのための中国語のファクチュアリティ評価
- Authors: Jihao Gu, Yingyao Wang, Pi Bu, Chen Wang, Ziming Wang, Tengtao Song, Donglai Wei, Jiale Yuan, Yingxiu Zhao, Yancheng He, Shilong Li, Jiaheng Liu, Meng Cao, Jun Song, Yingshui Tan, Xiang Li, Wenbo Su, Zhicheng Zheng, Xiaoyong Zhu, Bo Zheng,
- Abstract要約: 我々は,中国語で「 ChineseSimpleVQA」というファクトリティに基づく視覚質問応答ベンチマークを初めて導入した。
このベンチマークの主な特徴は、中国語、多様な知識タイプ、マルチホップ質問の構築、高品質なデータ、静的な一貫性、短い回答による評価、などである。
- 参考スコア(独自算出の注目度): 38.921977141721605
- License:
- Abstract: The evaluation of factual accuracy in large vision language models (LVLMs) has lagged behind their rapid development, making it challenging to fully reflect these models' knowledge capacity and reliability. In this paper, we introduce the first factuality-based visual question-answering benchmark in Chinese, named ChineseSimpleVQA, aimed at assessing the visual factuality of LVLMs across 8 major topics and 56 subtopics. The key features of this benchmark include a focus on the Chinese language, diverse knowledge types, a multi-hop question construction, high-quality data, static consistency, and easy-to-evaluate through short answers. Moreover, we contribute a rigorous data construction pipeline and decouple the visual factuality into two parts: seeing the world (i.e., object recognition) and discovering knowledge. This decoupling allows us to analyze the capability boundaries and execution mechanisms of LVLMs. Subsequently, we evaluate 34 advanced open-source and closed-source models, revealing critical performance gaps within this field.
- Abstract(参考訳): 大規模視覚言語モデル(LVLM)における事実精度の評価は、その急速な発展に遅れを取っており、これらのモデルの知識能力と信頼性を完全に反映することは困難である。
本稿では,8つの主要なトピックと56のサブトピックにわたるLVLMの視覚的事実性を評価することを目的とした,中国語の「 ChineseSimpleVQA」という,ファクトリティに基づく視覚的質問応答ベンチマークについて紹介する。
このベンチマークの主な特徴は、中国語、多様な知識タイプ、マルチホップ質問の構築、高品質なデータ、静的な一貫性、短い回答による評価、などである。
さらに、厳密なデータ構築パイプラインにコントリビュートし、視覚的事実性を2つの部分に分割する。
この分離により,LVLMの機能境界と実行機構を解析できる。
その後、34の高度なオープンソースおよびクローズドソースモデルを評価し、この分野における重要なパフォーマンスギャップを明らかにした。
関連論文リスト
- VLM$^2$-Bench: A Closer Look at How Well VLMs Implicitly Link Explicit Matching Visual Cues [32.00120712945976]
VLM$2$-Benchは、視覚言語モデルがマッチングキューを視覚的にリンクできるかどうかを評価するために設計されたベンチマークである。
我々は、モデルが視覚的手がかりをリンクする能力において重要な課題を特定し、GPT-4oでさえ人間より34.80%遅れている重要なパフォーマンスギャップを浮き彫りにしている。
論文 参考訳(メタデータ) (2025-02-17T17:57:50Z) - Massive Values in Self-Attention Modules are the Key to Contextual Knowledge Understanding [58.364933651703524]
注目クエリの特定の領域において、集中した巨大な値が一貫して現れることを示す。
これらの膨大な価値は文脈知識の解釈において重要な役割を担っている。
大量の値の出現を辿り、そのような濃度は回転位置によって引き起こされる。
論文 参考訳(メタデータ) (2025-02-03T17:47:03Z) - Chinese SimpleQA: A Chinese Factuality Evaluation for Large Language Models [24.47838086336772]
中国語SimpleQAは、短い質問に答える言語モデルの事実性を評価する最初の包括的な中国のベンチマークである。
私たちは、99の多様なサブトピックを持つ6つの主要なトピックに関する中国語に焦点を当てています。
論文 参考訳(メタデータ) (2024-11-11T17:10:56Z) - CVLUE: A New Benchmark Dataset for Chinese Vision-Language Understanding Evaluation [49.41531871253317]
我々は、新しい中国語ビジョン言語理解評価ベンチマークデータセットを提案する。
オブジェクトカテゴリとイメージの選択は、完全に中国のネイティブスピーカーによって駆動される。
中国文化関連VLデータセットの微調整により,VLMの中国文化理解が効果的に向上することが確認された。
論文 参考訳(メタデータ) (2024-07-01T08:35:37Z) - FoundaBench: Evaluating Chinese Fundamental Knowledge Capabilities of Large Language Models [64.11333762954283]
本稿では,中国のLLMの基本知識能力を厳格に評価するための先駆的ベンチマークであるFoundaBenchを紹介する。
本稿では、従来の評価手法とCircularEvalプロトコルの両方を用いて、モデル応答の潜在的なバイアスを軽減するため、FoundaBenchを用いた12の最先端LCMの広範な評価を行う。
以上の結果から,中国のコーパスで事前学習したモデルの性能が向上し,モデル推論とメモリリコール能力の相違が明らかとなった。
論文 参考訳(メタデータ) (2024-04-29T01:49:07Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
本稿では,IT-LVLMの基本的なコンピュータビジョンタスクにおける能力を評価するために,スケーラブルなテストベッドを提案する。
MERLIMには300K以上の画像検索ペアが含まれており、IT-LVLMにおけるクロスモーダルな"ハロシン化"イベントの検出に重点を置いている。
論文 参考訳(メタデータ) (2023-12-03T16:39:36Z) - ViCLEVR: A Visual Reasoning Dataset and Hybrid Multimodal Fusion Model
for Visual Question Answering in Vietnamese [1.6340299456362617]
ベトナムにおける様々な視覚的推論能力を評価するための先駆的な収集であるViCLEVRデータセットを紹介した。
我々は、現代の視覚的推論システムの包括的な分析を行い、その強みと限界についての貴重な洞察を提供する。
PhoVITは、質問に基づいて画像中のオブジェクトを識別する総合的なマルチモーダル融合である。
論文 参考訳(メタデータ) (2023-10-27T10:44:50Z) - KoLA: Carefully Benchmarking World Knowledge of Large Language Models [87.96683299084788]
我々は知識指向LLMアセスメントベンチマーク(KoLA)を構築した。
人間の認知を模倣して、知識関連能力の4段階の分類を形成し、19ドルのタスクをカバーします。
私たちは、LLMによって事前訓練されたコーパスであるウィキペディアと、継続的に収集された新興コーパスを使用して、目に見えないデータや進化する知識を扱う能力を評価します。
論文 参考訳(メタデータ) (2023-06-15T17:20:46Z) - Vision-Language Intelligence: Tasks, Representation Learning, and Large
Models [32.142076223602906]
本稿では,時間的観点からの視覚言語知能の包括的調査について述べる。
本稿では,この分野での開発を,タスク固有手法,視覚言語事前学習法,大規模弱ラベルデータによって強化された大規模モデルという3つの期間にまとめる。
論文 参考訳(メタデータ) (2022-03-03T18:54:59Z) - Intrinsic Knowledge Evaluation on Chinese Language Models [5.293979881130493]
本稿では, 統語的, 意味的, 常識的, 事実的知識の4つの課題について, 合計39,308ドルの質問に集約する。
我々の調査と知識データは、事前訓練された中国のLMを評価するための信頼性の高いベンチマークであることが証明されている。
論文 参考訳(メタデータ) (2020-11-29T04:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。