論文の概要: Lightweight Deepfake Detection Based on Multi-Feature Fusion
- arxiv url: http://arxiv.org/abs/2502.11763v1
- Date: Mon, 17 Feb 2025 12:55:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:15:09.421810
- Title: Lightweight Deepfake Detection Based on Multi-Feature Fusion
- Title(参考訳): 多機能核融合による軽量ディープフェイク検出
- Authors: Siddiqui Muhammad Yasir, Hyun Kim,
- Abstract要約: Deepfakeの技術は、ディープラーニングベースの顔操作技術を利用して、非常にリアルだが人工的に生成されたコンテンツを作るビデオの顔にシームレスに置き換える。
本研究では,限られた計算資源を持つデバイスに適したディープフェイク画像と映像を効率よく,かつ軽量に検出する手法を提案する。
HOG LBPとKAZEの併用により,FaceForensics++では92%,Celeb-DFv2では96%の精度が向上した。
- 参考スコア(独自算出の注目度): 4.300416351970122
- License:
- Abstract: Deepfake technology utilizes deep learning based face manipulation techniques to seamlessly replace faces in videos creating highly realistic but artificially generated content. Although this technology has beneficial applications in media and entertainment misuse of its capabilities may lead to serious risks including identity theft cyberbullying and false information. The integration of DL with visual cognition has resulted in important technological improvements particularly in addressing privacy risks caused by artificially generated deepfake images on digital media platforms. In this study we propose an efficient and lightweight method for detecting deepfake images and videos making it suitable for devices with limited computational resources. In order to reduce the computational burden usually associated with DL models our method integrates machine learning classifiers in combination with keyframing approaches and texture analysis. Moreover the features extracted with a histogram of oriented gradients (HOG) local binary pattern (LBP) and KAZE bands were integrated to evaluate using random forest extreme gradient boosting extra trees and support vector classifier algorithms. Our findings show a feature-level fusion of HOG LBP and KAZE features improves accuracy to 92% and 96% on FaceForensics++ and Celeb-DFv2 respectively.
- Abstract(参考訳): Deepfakeの技術は、ディープラーニングベースの顔操作技術を利用して、非常にリアルだが人工的に生成されたコンテンツを作るビデオの顔にシームレスに置き換える。
この技術はメディアやエンターテイメントの誤用に有効だが、ID盗難のサイバーいじめや偽情報など重大なリスクをもたらす可能性がある。
デジタルメディアプラットフォーム上で人工的に生成されたディープフェイク画像によるプライバシーリスクに対処するため、DLと視覚認知の統合は、特に重要な技術的改善をもたらした。
本研究では,限られた計算資源を持つデバイスに適したディープフェイク画像と映像を効率よく,かつ軽量に検出する手法を提案する。
DLモデルに付随する計算負担を軽減するため,本手法では,キーフレーミング手法とテクスチャ解析を組み合わせた機械学習分類器を統合する。
さらに, 配向勾配 (HOG) 局所二分パターン (LBP) とKAZEバンドのヒストグラムを用いて抽出した特徴を, ランダム森林の極端勾配を増進して余分な木を増進し, 支持ベクトル分類器アルゴリズムを用いて評価した。
HOG LBPとKAZEの併用により,FaceForensics++では92%,Celeb-DFv2では96%の精度が向上した。
関連論文リスト
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - Towards More General Video-based Deepfake Detection through Facial Feature Guided Adaptation for Foundation Model [15.61920157541529]
内部にリッチな情報をエンコードしたファンデーションモデルを適用することにより,新しいディープフェイク検出手法を提案する。
近年のパラメータ効率の良い微調整技術に触発されて,新しいサイドネットワーク型デコーダを提案する。
提案手法は,見知らぬディープフェイクサンプルの同定に優れた有効性を示し,顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2024-04-08T14:58:52Z) - Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
本稿では,持続的かつ積極的なディープフェイクトレーニング強化ソリューションを提案する。
我々は、ディープフェイクジェネレータモデルによって導入されたアーティファクトの効果を模倣するオートエンコーダのプールを採用する。
実験の結果,提案するアンサンブル・オートエンコーダに基づくデータ拡張学習手法が一般化の点で改善されていることがわかった。
論文 参考訳(メタデータ) (2024-03-29T19:09:08Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
ディープフェイク検出(Deepfake detection)とは、画像やビデオにおいて、人工的に生成された顔や編集された顔を検出すること。
本稿では,実顔と偽顔とを適応的に識別するDeepFidelityという新しいDeepfake検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:19:45Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - An Experimental Evaluation on Deepfake Detection using Deep Face
Recognition [0.0]
ディープラーニングは、ディープフェイク(deepfakes)として知られる非常に現実的なフェイクコンテンツを生み出した。
現在のディープフェイク検出法のほとんどは、2クラス畳み込みニューラルネットワーク(CNN)を用いた偽のイメージやビデオとを区別する二項分類問題と見なされている。
本稿では,異なる損失関数とディープフェイク生成技術を用いて,ディープフェイク識別におけるディープフェイク認識の有効性を徹底的に評価する。
論文 参考訳(メタデータ) (2021-10-04T18:02:56Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。