論文の概要: LLMs are Also Effective Embedding Models: An In-depth Overview
- arxiv url: http://arxiv.org/abs/2412.12591v1
- Date: Tue, 17 Dec 2024 06:48:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:59:38.166739
- Title: LLMs are Also Effective Embedding Models: An In-depth Overview
- Title(参考訳): LLMも効果的な埋め込みモデルである:詳細な概要
- Authors: Chongyang Tao, Tao Shen, Shen Gao, Junshuo Zhang, Zhen Li, Zhengwei Tao, Shuai Ma,
- Abstract要約: 大規模言語モデル(LLM)は、様々なタスクで最先端のパフォーマンスを達成することによって、自然言語処理に革命をもたらした。
近年、埋め込みモデルとしての有効性が注目され、ELMoやBERTのような従来のエンコーダのみのモデルから、GPT、LLaMA、Mistralのようなデコーダのみの大規模LLMへとパラダイムシフトした。
- 参考スコア(独自算出の注目度): 40.53941563464671
- License:
- Abstract: Large language models (LLMs) have revolutionized natural language processing by achieving state-of-the-art performance across various tasks. Recently, their effectiveness as embedding models has gained attention, marking a paradigm shift from traditional encoder-only models like ELMo and BERT to decoder-only, large-scale LLMs such as GPT, LLaMA, and Mistral. This survey provides an in-depth overview of this transition, beginning with foundational techniques before the LLM era, followed by LLM-based embedding models through two main strategies to derive embeddings from LLMs. 1) Direct prompting: We mainly discuss the prompt designs and the underlying rationale for deriving competitive embeddings. 2) Data-centric tuning: We cover extensive aspects that affect tuning an embedding model, including model architecture, training objectives, data constructions, etc. Upon the above, we also cover advanced methods, such as handling longer texts, and multilingual and cross-modal data. Furthermore, we discuss factors affecting choices of embedding models, such as performance/efficiency comparisons, dense vs sparse embeddings, pooling strategies, and scaling law. Lastly, the survey highlights the limitations and challenges in adapting LLMs for embeddings, including cross-task embedding quality, trade-offs between efficiency and accuracy, low-resource, long-context, data bias, robustness, etc. This survey serves as a valuable resource for researchers and practitioners by synthesizing current advancements, highlighting key challenges, and offering a comprehensive framework for future work aimed at enhancing the effectiveness and efficiency of LLMs as embedding models.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々なタスクで最先端のパフォーマンスを達成することによって、自然言語処理に革命をもたらした。
近年、埋め込みモデルとしての有効性が注目され、ELMoやBERTのような従来のエンコーダのみのモデルから、GPT、LLaMA、Mistralのようなデコーダのみの大規模LLMへとパラダイムシフトしている。
この調査は,LLM時代以前の基礎技術から始まり,LLMから埋め込みを導出するための2つの主要な戦略を通じて,LLMベースの埋め込みモデルが続く,この移行の詳細な概要を提供する。
1)直接的プロンプト: 競争的埋め込みを導出するための素早い設計と基礎的根拠を主に論じる。
2) データ中心のチューニング: モデルアーキテクチャ、トレーニング目標、データ構造など、埋め込みモデルのチューニングに影響を与える幅広い側面をカバーします。
以上の結果から,より長いテキストや多言語・クロスモーダルデータの処理など,高度な手法についても取り上げる。
さらに、性能/効率比較、密度とスパース埋め込み、プーリング戦略、スケーリング法則など、埋め込みモデルの選択に影響する要因についても論じる。
最後に、調査では、組み込みにLLMを適用する際の制限と課題を強調している。例えば、クロスタスクの埋め込み品質、効率と正確性の間のトレードオフ、低リソース、長期コンテキスト、データバイアス、堅牢性などだ。
この調査は、現在の進歩を合成し、重要な課題を強調し、組込みモデルとしてのLLMの有効性と効率を高めることを目的とした、将来の研究のための包括的なフレームワークを提供することによって、研究者や実践者にとって貴重なリソースとなる。
関連論文リスト
- From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
大きな言語モデル(LLM)は、全く新しいデータインスタンスを生成し、よりコスト効率の良いアノテーションを提供するために使われています。
本調査は,LSMに基づくAL手法の直感的な理解を目指して,研究者や実践者の最新のリソースとして機能することを目的としている。
論文 参考訳(メタデータ) (2025-02-17T12:58:17Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
大規模言語モデル(LLM)は言語理解と生成能力を大幅に改善した。
LLMは、高い計算およびストレージリソース要求のため、リソース制約のあるエッジデバイスにデプロイするのは難しい。
モデル性能を維持しつつ,計算コストとメモリコストを大幅に削減する構造的適応型プルーニング(SAAP)を提案する。
論文 参考訳(メタデータ) (2024-12-19T18:08:04Z) - LITA: An Efficient LLM-assisted Iterative Topic Augmentation Framework [0.0]
大きな言語モデル(LLM)は動的トピックの洗練と発見の可能性を秘めている。
これらの課題に対処するため、LLM支援反復トピック拡張フレームワーク(LITA)を提案する。
LITAは、ユーザが提供するシードと埋め込みベースのクラスタリングと反復的な改良を統合している。
論文 参考訳(メタデータ) (2024-12-17T01:43:44Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
本稿では,Large Language Models (LLM) の微調整について検討する。
従来の自然言語処理(NLP)モデルから、AIにおける彼らの重要な役割まで、LLMの歴史的進化を概説している。
本報告では, 微調整LDMのための構造化7段パイプラインについて紹介する。
論文 参考訳(メタデータ) (2024-08-23T14:48:02Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - A Survey on Efficient Inference for Large Language Models [25.572035747669275]
大きな言語モデル(LLM)は、様々なタスクにまたがる顕著なパフォーマンスのために、広く注目を集めている。
LLM推論のかなりの計算とメモリ要件は、リソース制約のあるシナリオへの展開に困難をもたらす。
本稿では,LLMの効率的な推論について,既存の文献を包括的に調査する。
論文 参考訳(メタデータ) (2024-04-22T15:53:08Z) - When Life gives you LLMs, make LLM-ADE: Large Language Models with Adaptive Data Engineering [0.0]
LLM-ADEは、大規模言語モデルのトレーニングを継続するための方法論である。
それは破滅的な忘れと二重降下の課題に対処する。
これは、以前に取得した知識を保持しながら、新しいデータに対するモデル適応性を高める。
論文 参考訳(メタデータ) (2024-04-19T17:43:26Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。