Enhanced Anomaly Detection in IoMT Networks using Ensemble AI Models on the CICIoMT2024 Dataset
- URL: http://arxiv.org/abs/2502.11854v1
- Date: Mon, 17 Feb 2025 14:46:58 GMT
- Title: Enhanced Anomaly Detection in IoMT Networks using Ensemble AI Models on the CICIoMT2024 Dataset
- Authors: Prathamesh Chandekar, Mansi Mehta, Swet Chandan,
- Abstract summary: The rapid proliferation of Internet of Medical Things (IoMT) devices in healthcare has introduced unique cybersecurity challenges.
This research aims to develop an advanced, real-time anomaly detection framework tailored for IoMT network traffic.
- Score: 0.7753092380426906
- License:
- Abstract: The rapid proliferation of Internet of Medical Things (IoMT) devices in healthcare has introduced unique cybersecurity challenges, primarily due to the diverse communication protocols and critical nature of these devices This research aims to develop an advanced, real-time anomaly detection framework tailored for IoMT network traffic, leveraging AI/ML models and the CICIoMT2024 dataset By integrating multi-protocol (MQTT, WiFi), attack-specific (DoS, DDoS), time-series (active/idle states), and device-specific (Bluetooth) data, our study captures a comprehensive range of IoMT interactions As part of our data analysis, various machine learning techniques are employed which include an ensemble model using XGBoost for improved performance against specific attack types, sequential models comprised of LSTM and CNN-LSTM that leverage time dependencies, and unsupervised models such as Autoencoders and Isolation Forest that are good in general anomaly detection The results of the experiment prove with an ensemble model lowers false positive rates and reduced detections.
Related papers
- FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [7.842334649864372]
Internet of Things (IoT) devices across multiple sectors has escalated serious network security concerns.
Traditional Machine Learning (ML)-based Intrusion Detection Systems (IDSs) for cyber-attack classification require data transmission from IoT devices to a centralized server for traffic analysis, raising severe privacy concerns.
We introduce FedMADE, a novel dynamic aggregation method, which clusters devices by their traffic patterns and aggregates local models based on their contributions towards overall performance.
arXiv Detail & Related papers (2024-08-13T18:42:34Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - IoTGeM: Generalizable Models for Behaviour-Based IoT Attack Detection [3.3772986620114387]
We present an approach for modelling IoT network attacks that focuses on generalizability, yet also leads to better detection and performance.
First, we present an improved rolling window approach for feature extraction, and introduce a multi-step feature selection process that reduces overfitting.
Second, we build and test models using isolated train and test datasets, thereby avoiding common data leaks.
Third, we rigorously evaluate our methodology using a diverse portfolio of machine learning models, evaluation metrics and datasets.
arXiv Detail & Related papers (2023-10-17T21:46:43Z) - Ensemble Learning based Anomaly Detection for IoT Cybersecurity via
Bayesian Hyperparameters Sensitivity Analysis [2.3226893628361682]
Internet of Things (IoT) integrates more than billions of intelligent devices over the globe with the capability of communicating with other connected devices.
Data collected by IoT contain a tremendous amount of information for anomaly detection.
In this paper, we present a study on using ensemble machine learning methods for enhancing IoT cybersecurity via anomaly detection.
arXiv Detail & Related papers (2023-07-20T05:23:49Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Detecting Anomalous Microflows in IoT Volumetric Attacks via Dynamic
Monitoring of MUD Activity [1.294952045574009]
Anomaly-based detection methods are promising in finding new attacks.
There are certain practical challenges like false-positive alarms, hard to explain, and difficult to scale cost-effectively.
In this paper, we use SDN to enforce and monitor the expected behaviors of each IoT device.
arXiv Detail & Related papers (2023-04-11T05:17:51Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Deep Learning based Covert Attack Identification for Industrial Control
Systems [5.299113288020827]
We develop a data-driven framework that can be used to detect, diagnose, and localize a type of cyberattack called covert attacks on smart grids.
The framework has a hybrid design that combines an autoencoder, a recurrent neural network (RNN) with a Long-Short-Term-Memory layer, and a Deep Neural Network (DNN)
arXiv Detail & Related papers (2020-09-25T17:48:43Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.