Detecting Anomalous Microflows in IoT Volumetric Attacks via Dynamic
Monitoring of MUD Activity
- URL: http://arxiv.org/abs/2304.04987v1
- Date: Tue, 11 Apr 2023 05:17:51 GMT
- Title: Detecting Anomalous Microflows in IoT Volumetric Attacks via Dynamic
Monitoring of MUD Activity
- Authors: Ayyoob Hamza and Hassan Habibi Gharakheili and Theophilus A. Benson
and Gustavo Batista and Vijay Sivaraman
- Abstract summary: Anomaly-based detection methods are promising in finding new attacks.
There are certain practical challenges like false-positive alarms, hard to explain, and difficult to scale cost-effectively.
In this paper, we use SDN to enforce and monitor the expected behaviors of each IoT device.
- Score: 1.294952045574009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: IoT networks are increasingly becoming target of sophisticated new
cyber-attacks. Anomaly-based detection methods are promising in finding new
attacks, but there are certain practical challenges like false-positive alarms,
hard to explain, and difficult to scale cost-effectively. The IETF recent
standard called Manufacturer Usage Description (MUD) seems promising to limit
the attack surface on IoT devices by formally specifying their intended network
behavior. In this paper, we use SDN to enforce and monitor the expected
behaviors of each IoT device, and train one-class classifier models to detect
volumetric attacks.
Our specific contributions are fourfold. (1) We develop a multi-level
inferencing model to dynamically detect anomalous patterns in network activity
of MUD-compliant traffic flows via SDN telemetry, followed by packet inspection
of anomalous flows. This provides enhanced fine-grained visibility into
distributed and direct attacks, allowing us to precisely isolate volumetric
attacks with microflow (5-tuple) resolution. (2) We collect traffic traces
(benign and a variety of volumetric attacks) from network behavior of IoT
devices in our lab, generate labeled datasets, and make them available to the
public. (3) We prototype a full working system (modules are released as
open-source), demonstrates its efficacy in detecting volumetric attacks on
several consumer IoT devices with high accuracy while maintaining low false
positives, and provides insights into cost and performance of our system. (4)
We demonstrate how our models scale in environments with a large number of
connected IoTs (with datasets collected from a network of IP cameras in our
university campus) by considering various training strategies (per device unit
versus per device type), and balancing the accuracy of prediction against the
cost of models in terms of size and training time.
Related papers
- Beyond Detection: Leveraging Large Language Models for Cyber Attack Prediction in IoT Networks [4.836070911511429]
This paper proposes a novel network intrusion prediction framework that combines Large Language Models (LLMs) with Long Short Term Memory (LSTM) networks.
Our framework, evaluated on the CICIoT2023 IoT attack dataset, demonstrates a significant improvement in predictive capabilities, achieving an overall accuracy of 98%.
arXiv Detail & Related papers (2024-08-26T06:57:22Z) - FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [7.842334649864372]
Internet of Things (IoT) devices across multiple sectors has escalated serious network security concerns.
Traditional Machine Learning (ML)-based Intrusion Detection Systems (IDSs) for cyber-attack classification require data transmission from IoT devices to a centralized server for traffic analysis, raising severe privacy concerns.
We introduce FedMADE, a novel dynamic aggregation method, which clusters devices by their traffic patterns and aggregates local models based on their contributions towards overall performance.
arXiv Detail & Related papers (2024-08-13T18:42:34Z) - Redefining DDoS Attack Detection Using A Dual-Space Prototypical Network-Based Approach [38.38311259444761]
We introduce a new deep learning-based technique for detecting DDoS attacks.
We propose a new dual-space prototypical network that leverages a unique dual-space loss function.
This approach capitalizes on the strengths of representation learning within the latent space.
arXiv Detail & Related papers (2024-06-04T03:22:52Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
Internet of Things (IoT) has altered living by controlling devices/things over the Internet.
To bring down the IoT network, attackers can utilise these devices to conduct a variety of network attacks.
In this paper, we have developed an unsupervised ensemble learning model that is able to detect new or unknown attacks in an IoT network from an unlabelled dataset.
arXiv Detail & Related papers (2022-07-16T11:12:32Z) - Deep Anomaly Detection for Time-series Data in Industrial IoT: A
Communication-Efficient On-device Federated Learning Approach [40.992167455141946]
This paper proposes a new communication-efficient on-device federated learning (FL)-based deep anomaly detection framework for sensing time-series data in IIoT.
We first introduce a FL framework to enable decentralized edge devices to collaboratively train an anomaly detection model, which can improve its generalization ability.
Second, we propose an Attention Mechanism-based Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to accurately detect anomalies.
Third, to adapt the proposed framework to the timeliness of industrial anomaly detection, we propose a gradient compression mechanism based on Top-textitk selection to
arXiv Detail & Related papers (2020-07-19T16:47:26Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
Internet of things (IoT) devices tend to have many vulnerabilities which can be exploited by an attacker.
Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner.
We present a distributed IoT simulation platform, which consists of 48 Raspberry Pis.
arXiv Detail & Related papers (2020-06-18T14:50:08Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers.
The widely adopted bring your own device (BYOD) policy which allows an employee to bring any IoT device into the workplace and attach it to an organization's network also increases the risk of attacks.
In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network.
arXiv Detail & Related papers (2020-02-25T12:24:49Z) - IoT Behavioral Monitoring via Network Traffic Analysis [0.45687771576879593]
This thesis is the culmination of our efforts to develop techniques to profile the network behavioral pattern of IoTs.
We develop a robust machine learning-based inference engine trained with attributes from traffic patterns.
We demonstrate real-time classification of 28 IoT devices with over 99% accuracy.
arXiv Detail & Related papers (2020-01-28T23:13:12Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.