Rethinking Audio-Visual Adversarial Vulnerability from Temporal and Modality Perspectives
- URL: http://arxiv.org/abs/2502.11858v2
- Date: Wed, 19 Feb 2025 15:04:12 GMT
- Title: Rethinking Audio-Visual Adversarial Vulnerability from Temporal and Modality Perspectives
- Authors: Zeliang Zhang, Susan Liang, Daiki Shimada, Chenliang Xu,
- Abstract summary: We study the adversarial robustness of audio-visual models, considering both temporal and modality-specific vulnerabilities.
To defend against such attacks, we introduce a novel audio-visual adversarial training framework.
- Score: 31.045047652296553
- License:
- Abstract: While audio-visual learning equips models with a richer understanding of the real world by leveraging multiple sensory modalities, this integration also introduces new vulnerabilities to adversarial attacks. In this paper, we present a comprehensive study of the adversarial robustness of audio-visual models, considering both temporal and modality-specific vulnerabilities. We propose two powerful adversarial attacks: 1) a temporal invariance attack that exploits the inherent temporal redundancy across consecutive time segments and 2) a modality misalignment attack that introduces incongruence between the audio and visual modalities. These attacks are designed to thoroughly assess the robustness of audio-visual models against diverse threats. Furthermore, to defend against such attacks, we introduce a novel audio-visual adversarial training framework. This framework addresses key challenges in vanilla adversarial training by incorporating efficient adversarial perturbation crafting tailored to multi-modal data and an adversarial curriculum strategy. Extensive experiments in the Kinetics-Sounds dataset demonstrate that our proposed temporal and modality-based attacks in degrading model performance can achieve state-of-the-art performance, while our adversarial training defense largely improves the adversarial robustness as well as the adversarial training efficiency.
Related papers
- Sustainable Self-evolution Adversarial Training [51.25767996364584]
We propose a Sustainable Self-Evolution Adversarial Training (SSEAT) framework for adversarial training defense models.
We introduce a continual adversarial defense pipeline to realize learning from various kinds of adversarial examples.
We also propose an adversarial data replay module to better select more diverse and key relearning data.
arXiv Detail & Related papers (2024-12-03T08:41:11Z) - DiffuseDef: Improved Robustness to Adversarial Attacks [38.34642687239535]
adversarial attacks pose a critical challenge to system built using pretrained language models.
We propose DiffuseDef, which incorporates a diffusion layer as a denoiser between the encoder and the classifier.
During inference, the adversarial hidden state is first combined with sampled noise, then denoised iteratively and finally ensembled to produce a robust text representation.
arXiv Detail & Related papers (2024-06-28T22:36:17Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
We propose a novel approach that generates adversarial attacks in a mutual-modality optimization scheme.
Our approach outperforms state-of-the-art attack methods and can be readily deployed as a plug-and-play solution.
arXiv Detail & Related papers (2023-12-20T05:06:01Z) - Robust Safety Classifier for Large Language Models: Adversarial Prompt
Shield [7.5520641322945785]
Large Language Models' safety remains a critical concern due to their vulnerability to adversarial attacks.
We introduce the Adversarial Prompt Shield (APS), a lightweight model that excels in detection accuracy and demonstrates resilience against adversarial prompts.
We also propose novel strategies for autonomously generating adversarial training datasets.
arXiv Detail & Related papers (2023-10-31T22:22:10Z) - Exploiting Explainability to Design Adversarial Attacks and Evaluate
Attack Resilience in Hate-Speech Detection Models [0.47334880432883714]
We present an analysis of adversarial robustness exhibited by various hate-speech detection models.
We devise and execute targeted attacks on the text by leveraging the TextAttack tool.
This work paves the way for creating more robust and reliable hate-speech detection systems.
arXiv Detail & Related papers (2023-05-29T19:59:40Z) - Improving Adversarial Robustness with Self-Paced Hard-Class Pair
Reweighting [5.084323778393556]
adversarial training with untargeted attacks is one of the most recognized methods.
We find that the naturally imbalanced inter-class semantic similarity makes those hard-class pairs to become the virtual targets of each other.
We propose to upweight hard-class pair loss in model optimization, which prompts learning discriminative features from hard classes.
arXiv Detail & Related papers (2022-10-26T22:51:36Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
We introduce a new concept of adversarial training graph (ATG) with which the proposed adversarial training with feature separability (ATFS) enables to boost the intra-class feature similarity and increase inter-class feature variance.
Through comprehensive experiments, we demonstrate that the proposed ATFS framework significantly improves both clean and robust performance.
arXiv Detail & Related papers (2022-05-02T04:04:23Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Characterizing the adversarial vulnerability of speech self-supervised
learning [95.03389072594243]
We make the first attempt to investigate the adversarial vulnerability of such paradigm under the attacks from both zero-knowledge adversaries and limited-knowledge adversaries.
The experimental results illustrate that the paradigm proposed by SUPERB is seriously vulnerable to limited-knowledge adversaries.
arXiv Detail & Related papers (2021-11-08T08:44:04Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.