論文の概要: On the robustness of ChatGPT in teaching Korean Mathematics
- arxiv url: http://arxiv.org/abs/2502.11915v1
- Date: Mon, 17 Feb 2025 15:31:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:09:24.338381
- Title: On the robustness of ChatGPT in teaching Korean Mathematics
- Title(参考訳): 韓国数学教育におけるChatGPTの堅牢性について
- Authors: Phuong-Nam Nguyen, Quang Nguyen-The, An Vu-Minh, Diep-Anh Nguyen, Xuan-Lam Pham,
- Abstract要約: ChatGPTは66.72%の精度で、586問中391問を正確に答えている。
以上の結果から,ChatGPTの評価は教育理論やテストテッカーの視点と一致していることがわかった。
今後の研究は言語バイアスに対処し、多言語にわたって精度を高めるべきである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: ChatGPT, an Artificial Intelligence model, has the potential to revolutionize education. However, its effectiveness in solving non-English questions remains uncertain. This study evaluates ChatGPT's robustness using 586 Korean mathematics questions. ChatGPT achieves 66.72% accuracy, correctly answering 391 out of 586 questions. We also assess its ability to rate mathematics questions based on eleven criteria and perform a topic analysis. Our findings show that ChatGPT's ratings align with educational theory and test-taker perspectives. While ChatGPT performs well in question classification, it struggles with non-English contexts, highlighting areas for improvement. Future research should address linguistic biases and enhance accuracy across diverse languages. Domain-specific optimizations and multilingual training could improve ChatGPT's role in personalized education.
- Abstract(参考訳): 人工知能モデルであるChatGPTは、教育に革命をもたらす可能性がある。
しかし、非英語質問の解法の有効性は依然として不明である。
本研究は586の韓国数学質問を用いてChatGPTの堅牢性を評価する。
ChatGPTは66.72%の精度で、586問中391問を正確に答えている。
また、11の基準に基づいて数学の質問を評価する能力を評価し、トピック分析を行う。
以上の結果から,ChatGPTの評価は教育理論やテストテッカーの視点と一致していることがわかった。
ChatGPTは問題分類において良好に機能するが、英語以外の文脈と競合し、改善すべき領域を強調している。
今後の研究は言語バイアスに対処し、多言語にわたって精度を高めるべきである。
ドメイン固有の最適化と多言語学習は、パーソナライズされた教育におけるChatGPTの役割を改善する可能性がある。
関連論文リスト
- Evaluating ChatGPT as a Question Answering System: A Comprehensive
Analysis and Comparison with Existing Models [0.0]
本稿では,質問応答システム(QAS)としてのChatGPTについて検討する。
主な焦点は、提供された段落から回答を抽出する際のChatGPTの熟練度を評価することである。
評価では幻覚が強調され、ChatGPTは提供された文脈で回答が得られない質問に対して応答を提供する。
論文 参考訳(メタデータ) (2023-12-11T08:49:18Z) - ChatGPT Performance on Standardized Testing Exam -- A Proposed Strategy
for Learners [0.0]
本研究は,ChatGPTの問題解決能力とその標準化されたテスト準備への応用について,GRE定量試験に焦点をあてて検討する。
GRE定量領域においてChatGPTが様々な質問タイプに対してどのように機能するか,また,質問の修正がその正確性に与える影響について検討する。
論文 参考訳(メタデータ) (2023-09-25T20:25:29Z) - Can ChatGPT pass the Vietnamese National High School Graduation
Examination? [0.0]
研究データセットには、文学テストケースで30のエッセイと、他の被験者向けにデザインされた1,700の多重選択質問が含まれていた。
ChatGPTは平均スコア6-7で試験に合格し、この技術が教育現場に革命をもたらす可能性を実証した。
論文 参考訳(メタデータ) (2023-06-15T14:47:03Z) - Transformative Effects of ChatGPT on Modern Education: Emerging Era of
AI Chatbots [36.760677949631514]
ChatGPTは、大量のデータの分析に基づいて、一貫性と有用な応答を提供するためにリリースされた。
予備評価の結果,ChatGPTは財務,コーディング,数学など各分野において異なる性能を示した。
不正確なデータや偽データを生成する可能性など、その使用には明らかな欠点がある。
ChatGPTを教育のツールとして使用すれば、学術的規制と評価のプラクティスを更新する必要がある。
論文 参考訳(メタデータ) (2023-05-25T17:35:57Z) - ChatGPT in the Classroom: An Analysis of Its Strengths and Weaknesses
for Solving Undergraduate Computer Science Questions [5.962828109329824]
ChatGPTはOpenAIが開発したAI言語モデルである。
学生がChatGPTを活用すれば、家庭での課題や試験を完了し、真に知識を得ることなく良い成績を得られるのではないか、という懸念がある。
論文 参考訳(メタデータ) (2023-04-28T17:26:32Z) - ChatLog: Carefully Evaluating the Evolution of ChatGPT Across Time [54.18651663847874]
ChatGPTは大きな成功をおさめ、インフラ的な地位を得たと考えられる。
既存のベンチマークでは,(1)周期的評価の無視,(2)きめ細かい特徴の欠如という2つの課題に直面する。
2023年3月から現在まで,21のNLPベンチマークに対して,さまざまな長文ChatGPT応答を大規模に記録した常時更新データセットであるChatLogを構築している。
論文 参考訳(メタデータ) (2023-04-27T11:33:48Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
チャットGPTは、人間の質問に対する流動的で高品質な応答を生成できるため、大きな注目を集めている。
そこで我々は,ChatGPTの理解能力を,最も人気のあるGLUEベンチマークで評価し,より詳細な4種類のBERTスタイルのモデルと比較した。
2)ChatGPTは,感情分析や質問応答タスクにおいて,BERTと同等のパフォーマンスを達成している。
論文 参考訳(メタデータ) (2023-02-19T12:29:33Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z) - A Categorical Archive of ChatGPT Failures [47.64219291655723]
OpenAIが開発したChatGPTは、大量のデータを使って訓練され、人間の会話をシミュレートしている。
それは、広範囲の人間の問い合わせに効果的に答える能力のために、大きな注目を集めている。
しかし、ChatGPTの失敗の包括的分析は欠落しており、これが本研究の焦点となっている。
論文 参考訳(メタデータ) (2023-02-06T04:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。