A Survey on Bridging EEG Signals and Generative AI: From Image and Text to Beyond
- URL: http://arxiv.org/abs/2502.12048v2
- Date: Tue, 18 Feb 2025 22:49:49 GMT
- Title: A Survey on Bridging EEG Signals and Generative AI: From Image and Text to Beyond
- Authors: Shreya Shukla, Jose Torres, Abhijit Mishra, Jacek Gwizdka, Shounak Roychowdhury,
- Abstract summary: Integration of Brain-Computer Interfaces (BCIs) and Generative Artificial Intelligence (GenAI) has opened new frontiers in brain signal decoding.
Recent advances in deep learning, including Generative Adversarial Networks (GANs) and Transformer-based Large Language Models (LLMs), have significantly improved EEG-based generation of images, text, and speech.
- Score: 4.720913027054481
- License:
- Abstract: Integration of Brain-Computer Interfaces (BCIs) and Generative Artificial Intelligence (GenAI) has opened new frontiers in brain signal decoding, enabling assistive communication, neural representation learning, and multimodal integration. BCIs, particularly those leveraging Electroencephalography (EEG), provide a non-invasive means of translating neural activity into meaningful outputs. Recent advances in deep learning, including Generative Adversarial Networks (GANs) and Transformer-based Large Language Models (LLMs), have significantly improved EEG-based generation of images, text, and speech. This paper provides a literature review of the state-of-the-art in EEG-based multimodal generation, focusing on (i) EEG-to-image generation through GANs, Variational Autoencoders (VAEs), and Diffusion Models, and (ii) EEG-to-text generation leveraging Transformer based language models and contrastive learning methods. Additionally, we discuss the emerging domain of EEG-to-speech synthesis, an evolving multimodal frontier. We highlight key datasets, use cases, challenges, and EEG feature encoding methods that underpin generative approaches. By providing a structured overview of EEG-based generative AI, this survey aims to equip researchers and practitioners with insights to advance neural decoding, enhance assistive technologies, and expand the frontiers of brain-computer interaction.
Related papers
- Multimodal Brain-Computer Interfaces: AI-powered Decoding Methodologies [21.599095979583414]
This review highlights the core decoding algorithms that enable multimodal BCIs.
We emphasize algorithmic advancements in cross-modality mapping, sequential modeling, besides classic multi-modality fusion.
The current literature of BCI applications on visual, speech, and affective decoding are comprehensively explored.
arXiv Detail & Related papers (2025-02-05T02:14:08Z) - Comprehensive Review of EEG-to-Output Research: Decoding Neural Signals into Images, Videos, and Audio [0.0]
Recent advancements in machine learning and generative modeling have catalyzed the application of EEG in reconstructing perceptual experiences.
This paper systematically reviews EEG-to-output research, focusing on state-of-the-art generative methods, evaluation metrics, and data challenges.
arXiv Detail & Related papers (2024-12-28T03:50:56Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
We propose CognitionCapturer, a unified framework that fully leverages multimodal data to represent EEG signals.
Specifically, CognitionCapturer trains Modality Experts for each modality to extract cross-modal information from the EEG modality.
The framework does not require any fine-tuning of the generative models and can be extended to incorporate more modalities.
arXiv Detail & Related papers (2024-12-13T16:27:54Z) - A Survey of Spatio-Temporal EEG data Analysis: from Models to Applications [20.54846023209402]
This survey focuses on emerging methods and technologies that are poised to transform our comprehension and interpretation of brain activity.
We delve into self-supervised learning methods that enable the robust representation of brain signals.
We also explore emerging discriminative methods, including graph neural networks (GNN), foundation models, and large language models (LLMs)-based approaches.
The survey provides an extensive overview of these cutting-edge techniques, their current applications, and the profound implications they hold for future research and clinical practice.
arXiv Detail & Related papers (2024-09-26T08:09:15Z) - EEG decoding with conditional identification information [7.873458431535408]
Decoding EEG signals is crucial for unraveling human brain and advancing brain-computer interfaces.
Traditional machine learning algorithms have been hindered by the high noise levels and inherent inter-person variations in EEG signals.
Recent advances in deep neural networks (DNNs) have shown promise, owing to their advanced nonlinear modeling capabilities.
arXiv Detail & Related papers (2024-03-21T13:38:59Z) - Enhancing EEG-to-Text Decoding through Transferable Representations from Pre-trained Contrastive EEG-Text Masked Autoencoder [69.7813498468116]
We propose Contrastive EEG-Text Masked Autoencoder (CET-MAE), a novel model that orchestrates compound self-supervised learning across and within EEG and text.
We also develop a framework called E2T-PTR (EEG-to-Text decoding using Pretrained Transferable Representations) to decode text from EEG sequences.
arXiv Detail & Related papers (2024-02-27T11:45:21Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z) - The evolution of AI approaches for motor imagery EEG-based BCIs [2.294014185517203]
The Motor Imagery (MI) electroencephalography (EEG) based Brain Computer Interfaces (BCIs) allow the direct communication between humans and machines.
These systems open the possibility of developing applications that could span from the medical field to the entertainment industry.
Artificial Intelligence (AI) approaches become of fundamental importance especially when wanting to provide a correct and coherent feedback to BCI users.
arXiv Detail & Related papers (2022-10-11T07:42:54Z) - GenNI: Human-AI Collaboration for Data-Backed Text Generation [102.08127062293111]
Table2Text systems generate textual output based on structured data utilizing machine learning.
GenNI (Generation Negotiation Interface) is an interactive visual system for high-level human-AI collaboration in producing descriptive text.
arXiv Detail & Related papers (2021-10-19T18:07:07Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.