Comprehensive Review of EEG-to-Output Research: Decoding Neural Signals into Images, Videos, and Audio
- URL: http://arxiv.org/abs/2412.19999v1
- Date: Sat, 28 Dec 2024 03:50:56 GMT
- Title: Comprehensive Review of EEG-to-Output Research: Decoding Neural Signals into Images, Videos, and Audio
- Authors: Yashvir Sabharwal, Balaji Rama,
- Abstract summary: Recent advancements in machine learning and generative modeling have catalyzed the application of EEG in reconstructing perceptual experiences.
This paper systematically reviews EEG-to-output research, focusing on state-of-the-art generative methods, evaluation metrics, and data challenges.
- Score: 0.0
- License:
- Abstract: Electroencephalography (EEG) is an invaluable tool in neuroscience, offering insights into brain activity with high temporal resolution. Recent advancements in machine learning and generative modeling have catalyzed the application of EEG in reconstructing perceptual experiences, including images, videos, and audio. This paper systematically reviews EEG-to-output research, focusing on state-of-the-art generative methods, evaluation metrics, and data challenges. Using PRISMA guidelines, we analyze 1800 studies and identify key trends, challenges, and opportunities in the field. The findings emphasize the potential of advanced models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Transformers, while highlighting the pressing need for standardized datasets and cross-subject generalization. A roadmap for future research is proposed that aims to improve decoding accuracy and broadening real-world applications.
Related papers
- A Survey on Bridging EEG Signals and Generative AI: From Image and Text to Beyond [4.720913027054481]
Integration of Brain-Computer Interfaces (BCIs) and Generative Artificial Intelligence (GenAI) has opened new frontiers in brain signal decoding.
Recent advances in deep learning, including Generative Adversarial Networks (GANs) and Transformer-based Large Language Models (LLMs), have significantly improved EEG-based generation of images, text, and speech.
arXiv Detail & Related papers (2025-02-17T17:16:41Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
We propose CognitionCapturer, a unified framework that fully leverages multimodal data to represent EEG signals.
Specifically, CognitionCapturer trains Modality Experts for each modality to extract cross-modal information from the EEG modality.
The framework does not require any fine-tuning of the generative models and can be extended to incorporate more modalities.
arXiv Detail & Related papers (2024-12-13T16:27:54Z) - Machine Learning Innovations in CPR: A Comprehensive Survey on Enhanced Resuscitation Techniques [52.71395121577439]
This survey paper explores the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in Cardiopulmonary Resuscitation (CPR)
It highlights the impact of predictive modeling, AI-enhanced devices, and real-time data analysis in improving resuscitation outcomes.
The paper provides a comprehensive overview, classification, and critical analysis of current applications, challenges, and future directions in this emerging field.
arXiv Detail & Related papers (2024-11-03T18:01:50Z) - A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends [67.43992456058541]
Image restoration (IR) refers to the process of improving visual quality of images while removing degradation, such as noise, blur, weather effects, and so on.
Traditional IR methods typically target specific types of degradation, which limits their effectiveness in real-world scenarios with complex distortions.
The all-in-one image restoration (AiOIR) paradigm has emerged, offering a unified framework that adeptly addresses multiple degradation types.
arXiv Detail & Related papers (2024-10-19T11:11:09Z) - DREAMS: A python framework to train deep learning models with model card reporting for medical and health applications [7.2934799091933815]
We introduce a comprehensive deep learning framework tailored for EEG data processing, model training and report generation.
While constructed in way to be adapted and developed further by AI developers, it enables to report, through model cards, the outcome and specific information of use for both developers and clinicians.
arXiv Detail & Related papers (2024-09-26T13:12:13Z) - A Survey of Spatio-Temporal EEG data Analysis: from Models to Applications [20.54846023209402]
This survey focuses on emerging methods and technologies that are poised to transform our comprehension and interpretation of brain activity.
We delve into self-supervised learning methods that enable the robust representation of brain signals.
We also explore emerging discriminative methods, including graph neural networks (GNN), foundation models, and large language models (LLMs)-based approaches.
The survey provides an extensive overview of these cutting-edge techniques, their current applications, and the profound implications they hold for future research and clinical practice.
arXiv Detail & Related papers (2024-09-26T08:09:15Z) - hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
applications [3.031375888004876]
Two main issues challenge the existing DL-based modeling methods for EEG.
High variability between subjects and low signal-to-noise ratio make it difficult to ensure a good quality in the EEG data.
We propose two variational autoencoder models, namely vEEGNet-ver3 and hvEEGNet, to target the problem of high-fidelity EEG reconstruction.
arXiv Detail & Related papers (2023-11-20T15:36:31Z) - A Deep Learning Approach for the Segmentation of Electroencephalography
Data in Eye Tracking Applications [56.458448869572294]
We introduce DETRtime, a novel framework for time-series segmentation of EEG data.
Our end-to-end deep learning-based framework brings advances in Computer Vision to the forefront.
Our model generalizes well in the task of EEG sleep stage segmentation.
arXiv Detail & Related papers (2022-06-17T10:17:24Z) - GANSER: A Self-supervised Data Augmentation Framework for EEG-based
Emotion Recognition [15.812231441367022]
We propose a novel data augmentation framework, namely Generative Adversarial Network-based Self-supervised Data Augmentation (GANSER)
As the first to combine adversarial training with self-supervised learning for EEG-based emotion recognition, the proposed framework can generate high-quality simulated EEG samples.
A transformation function is employed to mask parts of EEG signals and force the generator to synthesize potential EEG signals based on the remaining parts.
arXiv Detail & Related papers (2021-09-07T14:42:55Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.