A Survey of Spatio-Temporal EEG data Analysis: from Models to Applications
- URL: http://arxiv.org/abs/2410.08224v1
- Date: Thu, 26 Sep 2024 08:09:15 GMT
- Title: A Survey of Spatio-Temporal EEG data Analysis: from Models to Applications
- Authors: Pengfei Wang, Huanran Zheng, Silong Dai, Yiqiao Wang, Xiaotian Gu, Yuanbin Wu, Xiaoling Wang,
- Abstract summary: This survey focuses on emerging methods and technologies that are poised to transform our comprehension and interpretation of brain activity.
We delve into self-supervised learning methods that enable the robust representation of brain signals.
We also explore emerging discriminative methods, including graph neural networks (GNN), foundation models, and large language models (LLMs)-based approaches.
The survey provides an extensive overview of these cutting-edge techniques, their current applications, and the profound implications they hold for future research and clinical practice.
- Score: 20.54846023209402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the field of electroencephalography (EEG) analysis has witnessed remarkable advancements, driven by the integration of machine learning and artificial intelligence. This survey aims to encapsulate the latest developments, focusing on emerging methods and technologies that are poised to transform our comprehension and interpretation of brain activity. We delve into self-supervised learning methods that enable the robust representation of brain signals, which are fundamental for a variety of downstream applications. We also explore emerging discriminative methods, including graph neural networks (GNN), foundation models, and large language models (LLMs)-based approaches. Furthermore, we examine generative technologies that harness EEG data to produce images or text, offering novel perspectives on brain activity visualization and interpretation. The survey provides an extensive overview of these cutting-edge techniques, their current applications, and the profound implications they hold for future research and clinical practice. The relevant literature and open-source materials have been compiled and are consistently being refreshed at \url{https://github.com/wpf535236337/LLMs4TS}
Related papers
- A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Generative Technology for Human Emotion Recognition: A Scope Review [11.578408396744237]
This survey aims to bridge the gaps in the existing literature by conducting a comprehensive analysis of over 320 research papers until June 2024.
It will introduce the mathematical principles of different generative models and the commonly used datasets.
It will provide an in-depth analysis of how generative techniques address emotion recognition based on different modalities.
arXiv Detail & Related papers (2024-07-04T05:22:55Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - What's the Situation with Intelligent Mesh Generation: A Survey and
Perspectives [13.081274167488843]
Intelligent Mesh Generation (IMG) represents a novel and promising field of research, utilizing machine learning techniques to generate meshes.
Despite its relative infancy, IMG has significantly broadened the adaptability and practicality of mesh generation techniques.
This paper endeavors to fill this gap by providing a systematic and thorough survey of the current IMG landscape.
arXiv Detail & Related papers (2022-11-11T05:24:16Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
Neural-symbolic computing (NeSy) has been an active research area of Artificial Intelligence (AI) for many years.
NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks.
arXiv Detail & Related papers (2022-10-28T04:38:10Z) - Applications of Generative Adversarial Networks in Neuroimaging and
Clinical Neuroscience [4.394368629380544]
Generative adversarial networks (GANs) are one powerful type of deep learning models that have been successfully utilized in numerous fields.
GANs have shown enhanced capabilities in capturing spatially complex, nonlinear, and potentially subtle disease effects.
This review appraises the existing literature on the applications of GANs in imaging studies of various neurological conditions.
arXiv Detail & Related papers (2022-06-14T18:10:00Z) - Roadmap on Signal Processing for Next Generation Measurement Systems [0.222020259427608]
Recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing.
This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems.
It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field.
arXiv Detail & Related papers (2021-11-03T19:39:34Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
We reviewed and summarized more than 200 recently published papers to provide a comprehensive overview of applying deep learning methods in various medical image analysis tasks.
Especially, we emphasize the latest progress and contributions of state-of-the-art unsupervised and semi-supervised deep learning in medical images.
arXiv Detail & Related papers (2021-05-27T18:05:12Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.