論文の概要: Can LLMs Simulate Social Media Engagement? A Study on Action-Guided Response Generation
- arxiv url: http://arxiv.org/abs/2502.12073v1
- Date: Mon, 17 Feb 2025 17:43:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:11.183172
- Title: Can LLMs Simulate Social Media Engagement? A Study on Action-Guided Response Generation
- Title(参考訳): LLMはソーシャルメディアのエンゲージメントをシミュレートできるか? : 行動誘導型応答生成に関する研究
- Authors: Zhongyi Qiu, Hanjia Lyu, Wei Xiong, Jiebo Luo,
- Abstract要約: 本稿では、行動誘導応答生成によるソーシャルメディアのエンゲージメントをシミュレートする大規模言語モデルの能力について分析する。
GPT-4o-mini,O1-mini,DeepSeek-R1をソーシャルメディアエンゲージメントシミュレーションで評価した。
- 参考スコア(独自算出の注目度): 51.44040615856536
- License:
- Abstract: Social media enables dynamic user engagement with trending topics, and recent research has explored the potential of large language models (LLMs) for response generation. While some studies investigate LLMs as agents for simulating user behavior on social media, their focus remains on practical viability and scalability rather than a deeper understanding of how well LLM aligns with human behavior. This paper analyzes LLMs' ability to simulate social media engagement through action guided response generation, where a model first predicts a user's most likely engagement action-retweet, quote, or rewrite-towards a trending post before generating a personalized response conditioned on the predicted action. We benchmark GPT-4o-mini, O1-mini, and DeepSeek-R1 in social media engagement simulation regarding a major societal event discussed on X. Our findings reveal that zero-shot LLMs underperform BERT in action prediction, while few-shot prompting initially degrades the prediction accuracy of LLMs with limited examples. However, in response generation, few-shot LLMs achieve stronger semantic alignment with ground truth posts.
- Abstract(参考訳): ソーシャルメディアはトレンドトピックによる動的ユーザエンゲージメントを可能にしており、最近の研究では、応答生成のための大規模言語モデル(LLM)の可能性を探っている。
ソーシャルメディア上でのユーザ行動をシミュレートするエージェントとしてLLMを研究する研究もあるが、LLMが人間の行動とどのように協調するかを深く理解するよりも、実用性やスケーラビリティに重点を置いている。
本稿では,行動誘導応答生成によってソーシャルメディアのエンゲージメントをシミュレートするLCMの能力を解析し,まずモデルがユーザの最も可能性の高いエンゲージメント行動のリツイート,引用,あるいは書き直しを予測し,予測されたアクションに基づいてパーソナライズされた応答を生成する。
我々は、Xで議論された主要な社会イベントに関するソーシャルメディアエンゲージメントシミュレーションにおいて、GPT-4o-mini、O1-mini、DeepSeek-R1をベンチマークした。
しかし、応答生成では、少数ショットのLLMは、基底真理ポストとより強力なセマンティックアライメントを実現する。
関連論文リスト
- Engagement-Driven Content Generation with Large Language Models [8.049552839071918]
大規模言語モデル(LLM)は1対1の相互作用において重要な説得能力を示す。
本研究では,相互接続型ユーザにおけるLCMの社会的影響と複雑な意見力学について検討する。
論文 参考訳(メタデータ) (2024-11-20T10:40:08Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
我々はtextitGenSim と呼ばれる新しい大規模言語モデル (LLM) ベースのシミュレーションプラットフォームを提案する。
我々のプラットフォームは10万のエージェントをサポートし、現実世界のコンテキストで大規模人口をシミュレートする。
我々の知る限り、GenSimは汎用的で大規模で修正可能な社会シミュレーションプラットフォームに向けた最初の一歩である。
論文 参考訳(メタデータ) (2024-10-06T05:02:23Z) - Advancing Annotation of Stance in Social Media Posts: A Comparative Analysis of Large Language Models and Crowd Sourcing [2.936331223824117]
ソーシャルメディア投稿における自動テキストアノテーションのための大規模言語モデル(LLM)は、大きな関心を集めている。
ソーシャルメディア投稿において,8つのオープンソースおよびプロプライエタリなLCMの性能分析を行った。
「我々の研究の顕著な発見は、姿勢を表わす文章の明快さが、LLMの姿勢判断が人間とどのように一致しているかにおいて重要な役割を担っていることである。」
論文 参考訳(メタデータ) (2024-06-11T17:26:07Z) - Are Large Language Models (LLMs) Good Social Predictors? [36.68104332805214]
本研究では,大規模言語モデル (LLM) が,ショートカットを伴わない一般的な入力機能を与えられた場合,社会的予測において期待通りに機能しないことを示す。
本稿では,実世界の社会学習環境の入力とシミュレートに一般的な特徴を利用する新しい社会予測タスクであるSoc-PRF予測を導入する。
論文 参考訳(メタデータ) (2024-02-20T00:59:22Z) - Exploring Value Biases: How LLMs Deviate Towards the Ideal [57.99044181599786]
LLM(Large-Language-Models)は幅広いアプリケーションにデプロイされ、その応答は社会的影響を増大させる。
価値バイアスは、人間の研究結果と同様、異なるカテゴリにわたるLSMにおいて強いことが示される。
論文 参考訳(メタデータ) (2024-02-16T18:28:43Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Learning to Generate Explainable Stock Predictions using Self-Reflective
Large Language Models [54.21695754082441]
説明可能なストック予測を生成するために,LLM(Large Language Models)を教えるフレームワークを提案する。
反射剤は自己推論によって過去の株価の動きを説明する方法を学ぶ一方、PPOトレーナーは最も可能性の高い説明を生成するためにモデルを訓練する。
我々のフレームワークは従来のディープラーニング法とLLM法の両方を予測精度とマシューズ相関係数で上回ることができる。
論文 参考訳(メタデータ) (2024-02-06T03:18:58Z) - Do LLM Agents Exhibit Social Behavior? [5.094340963261968]
State-Understanding-Value-Action (SUVA) は、社会的文脈における応答を体系的に分析するフレームワークである。
最終決定とそれにつながる反応生成プロセスの両方を通じて社会的行動を評価する。
発話に基づく推論がLLMの最終動作を確実に予測できることを実証する。
論文 参考訳(メタデータ) (2023-12-23T08:46:53Z) - Potential Benefits of Employing Large Language Models in Research in
Moral Education and Development [0.0]
近年,計算機科学者は大規模言語コーパスと人間強化を用いた予測モデルを訓練することで,大規模言語モデル(LLM)を開発した。
LLMが道徳教育・開発研究にどのように貢献するかについて検討する。
論文 参考訳(メタデータ) (2023-06-23T22:39:05Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。