Minimal Ranks, Maximum Confidence: Parameter-efficient Uncertainty Quantification for LoRA
- URL: http://arxiv.org/abs/2502.12122v1
- Date: Mon, 17 Feb 2025 18:46:29 GMT
- Title: Minimal Ranks, Maximum Confidence: Parameter-efficient Uncertainty Quantification for LoRA
- Authors: Patryk Marszałek, Klaudia Bałazy, Jacek Tabor, Tomasz Kuśmierczyk,
- Abstract summary: Low-Rank Adaptation (LoRA) enables parameter-efficient fine-tuning of large language models by decomposing weight updates into low-rank matrices.
We propose a novel parameter-efficient Bayesian LoRA, demonstrating that effective uncertainty quantification can be achieved in very low-dimensional parameter spaces.
- Score: 7.6400146954285315
- License:
- Abstract: Low-Rank Adaptation (LoRA) enables parameter-efficient fine-tuning of large language models by decomposing weight updates into low-rank matrices, significantly reducing storage and computational overhead. While effective, standard LoRA lacks mechanisms for uncertainty quantification, leading to overconfident and poorly calibrated models. Bayesian variants of LoRA address this limitation, but at the cost of a significantly increased number of trainable parameters, partially offsetting the original efficiency gains. Additionally, these models are harder to train and may suffer from unstable convergence. In this work, we propose a novel parameter-efficient Bayesian LoRA, demonstrating that effective uncertainty quantification can be achieved in very low-dimensional parameter spaces. The proposed method achieves strong performance with improved calibration and generalization while maintaining computational efficiency. Our empirical findings show that, with the appropriate projection of the weight space: (1) uncertainty can be effectively modeled in a low-dimensional space, and (2) weight covariances exhibit low ranks.
Related papers
- Robust and Efficient Fine-tuning of LLMs with Bayesian Reparameterization of Low-Rank Adaptation [17.84857303452691]
Large Language Models (LLMs) are highly resource-intensive to fine-tune due to their enormous size.
This paper highlights the importance of effective parameterization in low-rank fine-tuning to reduce estimator variance and enhance the stability of final model outputs.
We propose MonteCLoRA, an efficient fine-tuning technique, employing Monte Carlo estimation to learn an unbiased posterior estimation of low-rank parameters with low expected variance.
arXiv Detail & Related papers (2024-11-07T01:31:48Z) - IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models [68.55148272295916]
We propose IntLoRA, to push the efficiency limits by using integer type (INT) low-rank parameters to adapt the quantized diffusion models.
IntLoRA offers three key advantages: (i) for fine-tuning, the pre-trained weights are quantized, reducing memory usage; (ii) for storage, both pre-trained and low-rank weights are in INT which consumes less disk space; (iii) for inference, IntLoRA weights can be naturally merged into quantized pre-trained weights through efficient integer multiplication or bit-shifting.
arXiv Detail & Related papers (2024-10-29T05:50:17Z) - Controlled Low-Rank Adaptation with Subspace Regularization for Continued Training on Large Language Models [13.56631686493347]
Large language models (LLMs) exhibit remarkable capabilities in natural language processing but face catastrophic forgetting when learning new tasks.
We propose Controlled LoRA (CLoRA), a subspace regularization method on LoRA structure.
arXiv Detail & Related papers (2024-10-22T08:27:23Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.
We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.
Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models [26.808251361020066]
Fine-tuning pre-trained models is resource-intensive and laborious.
One widely adopted PEFT technique, Low-Rank Adaptation (LoRA), freezes the pre-trained model weights.
NEAT introduces a lightweight neural network that takes pre-trained weights as input and learns a nonlinear transformation to approximate cumulative weight updates.
arXiv Detail & Related papers (2024-10-02T17:29:23Z) - Flat-LoRA: Low-Rank Adaption over a Flat Loss Landscape [52.98187034726091]
Low-Rank Adaptation (LoRA) is an efficient way to fine-tune models by optimizing only a low-rank matrix.
A solution that appears flat in the LoRA space may exist sharp directions in the full parameter space, potentially harming generalization performance.
We propose Flat-LoRA, an efficient approach that seeks a low-rank adaptation located in a flat region of the full parameter space.
arXiv Detail & Related papers (2024-09-22T11:24:10Z) - MELoRA: Mini-Ensemble Low-Rank Adapters for Parameter-Efficient Fine-Tuning [71.50432879573614]
Low-rank adaptation (LoRA) is based on the idea that the adaptation process is intrinsically low-dimensional.
We present MELoRA, a mini-ensemble low-rank adapters that uses fewer trainable parameters while maintaining a higher rank.
Our experimental results show that, compared to LoRA, MELoRA achieves better performance with 8 times fewer trainable parameters on natural language understanding tasks and 36 times fewer trainable parameters on instruction following tasks.
arXiv Detail & Related papers (2024-02-27T07:14:12Z) - LoRA Meets Dropout under a Unified Framework [38.5176197615878]
Large language models (LLMs) have emerged as essential elements in numerous NLP applications.
Various dropout methods, initially designed for full finetuning with all the parameters updated, alleviates overfitting associated with excessive parameter redundancy.
We introduce a unified framework for a comprehensive investigation, which instantiates these methods based on dropping position, structural pattern and compensation measure.
arXiv Detail & Related papers (2024-02-25T07:09:10Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
We introduce sparse low-rank adaptation (SoRA) that enables dynamic adjustments to the intrinsic rank during the adaptation process.
Our approach strengthens the representation power of LoRA by initializing it with a higher rank, while efficiently taming a temporarily increased number of parameters.
Our experimental results demonstrate that SoRA can outperform other baselines even with 70% retained parameters and 70% training time.
arXiv Detail & Related papers (2023-11-20T11:56:25Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.