論文の概要: Ten Challenging Problems in Federated Foundation Models
- arxiv url: http://arxiv.org/abs/2502.12176v1
- Date: Fri, 14 Feb 2025 04:01:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:08:10.782203
- Title: Ten Challenging Problems in Federated Foundation Models
- Title(参考訳): フェデレーションモデルにおける10の問題点
- Authors: Tao Fan, Hanlin Gu, Xuemei Cao, Chee Seng Chan, Qian Chen, Yiqiang Chen, Yihui Feng, Yang Gu, Jiaxiang Geng, Bing Luo, Shuoling Liu, Win Kent Ong, Chao Ren, Jiaqi Shao, Chuan Sun, Xiaoli Tang, Hong Xi Tae, Yongxin Tong, Shuyue Wei, Fan Wu, Wei Xi, Mingcong Xu, He Yang, Xin Yang, Jiangpeng Yan, Hao Yu, Han Yu, Teng Zhang, Yifei Zhang, Xiaojin Zhang, Zhenzhe Zheng, Lixin Fan, Qiang Yang,
- Abstract要約: フェデレーション・ファンデーション・モデル(Federated Foundation Models、FedFM)は、フェデレーション・モデルの一般的な能力とフェデレーション・ラーニングのプライバシー保護能力を融合させる分散学習パラダイムである。
本稿では,FedFMに固有の10の課題について,基礎理論,プライベートデータの利用,継続学習,非学習,非IIDおよびグラフデータ,双方向知識伝達,インセンティブ機構設計,ゲーム機構設計,モデル透かし,効率を包括的に要約する。
- 参考スコア(独自算出の注目度): 55.343738234307544
- License:
- Abstract: Federated Foundation Models (FedFMs) represent a distributed learning paradigm that fuses general competences of foundation models as well as privacy-preserving capabilities of federated learning. This combination allows the large foundation models and the small local domain models at the remote clients to learn from each other in a teacher-student learning setting. This paper provides a comprehensive summary of the ten challenging problems inherent in FedFMs, encompassing foundational theory, utilization of private data, continual learning, unlearning, Non-IID and graph data, bidirectional knowledge transfer, incentive mechanism design, game mechanism design, model watermarking, and efficiency. The ten challenging problems manifest in five pivotal aspects: ``Foundational Theory," which aims to establish a coherent and unifying theoretical framework for FedFMs. ``Data," addressing the difficulties in leveraging domain-specific knowledge from private data while maintaining privacy; ``Heterogeneity," examining variations in data, model, and computational resources across clients; ``Security and Privacy," focusing on defenses against malicious attacks and model theft; and ``Efficiency," highlighting the need for improvements in training, communication, and parameter efficiency. For each problem, we offer a clear mathematical definition on the objective function, analyze existing methods, and discuss the key challenges and potential solutions. This in-depth exploration aims to advance the theoretical foundations of FedFMs, guide practical implementations, and inspire future research to overcome these obstacles, thereby enabling the robust, efficient, and privacy-preserving FedFMs in various real-world applications.
- Abstract(参考訳): フェデレーション・ファンデーション・モデル(Federated Foundation Models、FedFM)は、フェデレーション・モデルの一般的な能力とフェデレーション・ラーニングのプライバシー保護能力を融合させる分散学習パラダイムである。
この組み合わせにより、リモートクライアントにおける大きな基礎モデルと小さなローカルドメインモデルは、教師と学生の学習環境で互いに学習することができる。
本稿では,FedFMに固有の10の課題について,基礎理論,プライベートデータの利用,継続学習,非学習,非IIDおよびグラフデータ,双方向知識伝達,インセンティブ機構設計,ゲーム機構設計,モデル透かし,効率を包括的に要約する。
プライバシを維持しながら、プライベートデータからドメイン固有の知識を活用することの難しさに対処することを目的とした「Foundational Theory」、クライアント間のデータ、モデル、計算リソースの変化を調べる「Heterogeneity」、悪意のある攻撃やモデル盗難に対する防御に焦点を当てた「Security and Privacy」、トレーニング、コミュニケーション、パラメータ効率の改善の必要性を強調する「Efficiency」である。
各問題に対して、目的関数について明確な数学的定義を提供し、既存の手法を分析し、主要な課題と潜在的な解決策について議論する。
この詳細な調査は、FedFMの理論的基盤を前進させ、実践的な実装をガイドし、これらの障害を克服するために将来の研究を促すことを目的としている。
関連論文リスト
- FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - Advances in Robust Federated Learning: Heterogeneity Considerations [25.261572089655264]
主な課題は、異なるデータ分散、モデル構造、タスク目標、計算能力、通信リソースを持つ複数のクライアントでモデルを効率的にトレーニングすることである。
本稿ではまず,不均一なフェデレーション学習の基本概念について概説する。
次に、フェデレーション学習における研究課題を、データ、モデル、タスク、デバイス、コミュニケーションの5つの側面の観点から要約する。
論文 参考訳(メタデータ) (2024-05-16T06:35:42Z) - Advances and Open Challenges in Federated Foundation Models [34.37509703688661]
ファウンデーションモデル(FM)とフェデレートラーニング(FL)の統合は、人工知能(AI)における変革的パラダイムを提示する
本稿では,フェデレーション・ファンデーション・モデル(FedFM)の新興分野に関する包括的調査を行う。
論文 参考訳(メタデータ) (2024-04-23T09:44:58Z) - Position Paper: Assessing Robustness, Privacy, and Fairness in Federated
Learning Integrated with Foundation Models [39.86957940261993]
ファンデーションモデル(FM)をフェデレートラーニング(FL)に統合することは、堅牢性、プライバシ、公正性の点で新しい問題をもたらす。
我々は、関連するトレードオフを分析し、この統合によってもたらされる脅威と問題を明らかにし、これらの課題をナビゲートするための一連の基準と戦略を提案する。
論文 参考訳(メタデータ) (2024-02-02T19:26:00Z) - A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
フェデレートラーニング(FL)は、分散とプライバシ保護の方法で機械学習モデルをトレーニングするための有望なパラダイムとして登場した。
モデルに使用される手法の選択は、フェデレーション学習システムの性能、収束速度、通信効率、プライバシー保証において重要な役割を果たす。
本研究は,各手法のメリットとデメリットを慎重に比較,分類,記述し,さまざまなFLシナリオに適用性について検討する。
論文 参考訳(メタデータ) (2023-10-31T23:26:58Z) - A Survey on Federated Unlearning: Challenges, Methods, and Future Directions [21.90319100485268]
近年、忘れられる権利(RTBF)の概念は、デジタル信頼とAI安全のためのデータプライバシの重要な側面となっている。
マシン・アンラーニング(MU)は、MLモデルによって識別可能な情報を選択的に排除できる、かなりの注目を集めている。
FUは、フェデレートされた学習環境におけるデータ消去の課題に直面している。
論文 参考訳(メタデータ) (2023-10-31T13:32:00Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
フェデレーション・アンラーニングは、フェデレーション・システムで訓練されたモデルからデータを選択的に除去することを可能にする。
本稿では,既存のフェデレーション・アンラーニング手法について検討し,アルゴリズムの効率,モデル精度への影響,プライバシ保護の有効性について検討する。
フェデレートされたアンラーニング手法を評価するための統一ベンチマークであるOpenFederatedUnlearningフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - Selective Knowledge Sharing for Privacy-Preserving Federated
Distillation without A Good Teacher [52.2926020848095]
フェデレーション学習は、ホワイトボックス攻撃に脆弱で、異種クライアントへの適応に苦慮している。
本稿では,選択的FD(Selective-FD)と呼ばれるFDのための選択的知識共有機構を提案する。
論文 参考訳(メタデータ) (2023-04-04T12:04:19Z) - 10 Security and Privacy Problems in Large Foundation Models [69.70602220716718]
事前トレーニングされたファンデーションモデルは、AIエコシステムの'オペレーティングシステム'のようなものです。
事前訓練されたファンデーションモデルのセキュリティやプライバシの問題は、AIエコシステムの単一障害点につながる。
本章では、事前訓練された基礎モデルのセキュリティとプライバシに関する10の基本的な問題について論じる。
論文 参考訳(メタデータ) (2021-10-28T21:45:53Z) - On the Opportunities and Risks of Foundation Models [256.61956234436553]
これらのモデルの基礎モデルは、批判的に中心的だが不完全な性格を根底から立証するものです。
本報告では,基礎モデルの可能性とリスクについて概説する。
これらの疑問に対処するためには、基礎モデルに関する重要な研究の多くは、深い学際的なコラボレーションが必要であると信じている。
論文 参考訳(メタデータ) (2021-08-16T17:50:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。