論文の概要: ClusMFL: A Cluster-Enhanced Framework for Modality-Incomplete Multimodal Federated Learning in Brain Imaging Analysis
- arxiv url: http://arxiv.org/abs/2502.12180v1
- Date: Fri, 14 Feb 2025 09:33:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:09:11.947166
- Title: ClusMFL: A Cluster-Enhanced Framework for Modality-Incomplete Multimodal Federated Learning in Brain Imaging Analysis
- Title(参考訳): ClusMFL:脳画像解析におけるModality-Incomplete Multimodal Federated Learningのためのクラスタ強化フレームワーク
- Authors: Xinpeng Wang, Rong Zhou, Han Xie, Xiaoying Tang, Lifang He, Carl Yang,
- Abstract要約: 脳画像解析の文脈では、モダリティの不完全性は重要な課題である。
本稿では,機能クラスタリングを利用した新しいMFLフレームワークであるClusMFLを提案する。
ClusMFLは、様々なモダリティの不完全性のレベルにまたがる様々なベースライン手法と比較して、最先端の性能を達成する。
- 参考スコア(独自算出の注目度): 28.767460351377462
- License:
- Abstract: Multimodal Federated Learning (MFL) has emerged as a promising approach for collaboratively training multimodal models across distributed clients, particularly in healthcare domains. In the context of brain imaging analysis, modality incompleteness presents a significant challenge, where some institutions may lack specific imaging modalities (e.g., PET, MRI, or CT) due to privacy concerns, device limitations, or data availability issues. While existing work typically assumes modality completeness or oversimplifies missing-modality scenarios, we simulate a more realistic setting by considering both client-level and instance-level modality incompleteness in this study. Building on this realistic simulation, we propose ClusMFL, a novel MFL framework that leverages feature clustering for cross-institutional brain imaging analysis under modality incompleteness. Specifically, ClusMFL utilizes the FINCH algorithm to construct a pool of cluster centers for the feature embeddings of each modality-label pair, effectively capturing fine-grained data distributions. These cluster centers are then used for feature alignment within each modality through supervised contrastive learning, while also acting as proxies for missing modalities, allowing cross-modal knowledge transfer. Furthermore, ClusMFL employs a modality-aware aggregation strategy, further enhancing the model's performance in scenarios with severe modality incompleteness. We evaluate the proposed framework on the ADNI dataset, utilizing structural MRI and PET scans. Extensive experimental results demonstrate that ClusMFL achieves state-of-the-art performance compared to various baseline methods across varying levels of modality incompleteness, providing a scalable solution for cross-institutional brain imaging analysis.
- Abstract(参考訳): マルチモーダル・フェデレート・ラーニング(MFL)は、特に医療分野において、分散クライアント間で協調的にマルチモーダルモデルをトレーニングするための有望なアプローチとして登場した。
脳画像解析の文脈において、モダリティの不完全性は、プライバシーの懸念、デバイス制限、またはデータ可用性の問題により特定の画像モダリティ(例えば、PET、MRI、CT)が欠如している可能性がある、という重大な課題を呈している。
既存の研究は通常、モダリティ完全性を前提とするか、欠落したモダリティシナリオを過度に単純化するが、本研究では、クライアントレベルとインスタンスレベルのモダリティ不完全性の両方を考慮することによって、より現実的な設定をシミュレートする。
この現実的なシミュレーションに基づいてClusMFLを提案する。これは、機能クラスタリングを利用して、モダリティの不完全性の下での横断的な脳画像解析を行う新しいMFLフレームワークである。
具体的には、ClusMFLはFINCHアルゴリズムを用いて、各モダリティ-ラベルペアの機能埋め込みのためのクラスタセンターのプールを構築し、きめ細かいデータ分布を効果的にキャプチャする。
これらのクラスタセンターは、教師付きコントラスト学習を通じて各モーダル内の特徴アライメントに使用され、また欠落したモダリティのプロキシとして機能し、モダリティ間の知識伝達を可能にする。
さらに、ClusMFLはモダリティを意識したアグリゲーション戦略を採用し、厳密なモダリティ不完全性のあるシナリオにおけるモデルの性能をさらに向上させる。
構造的MRIとPETスキャンを用いて,ADNIデータセット上で提案するフレームワークの評価を行った。
ClusMFLは、様々なモダリティ不完全性のレベルにわたる様々なベースライン法と比較して、最先端の性能を達成し、クロスインスティカルな脳画像解析のためのスケーラブルなソリューションを提供する。
関連論文リスト
- Completed Feature Disentanglement Learning for Multimodal MRIs Analysis [36.32164729310868]
特徴不整合(FD)に基づく手法はマルチモーダルラーニング(MML)において大きな成功を収めた
本稿では,特徴デカップリング時に失われた情報を復元する完全特徴分散(CFD)戦略を提案する。
具体的には、CFD戦略は、モダリティ共有とモダリティ固有の特徴を識別するだけでなく、マルチモーダル入力のサブセット間の共有特徴を分離する。
論文 参考訳(メタデータ) (2024-07-06T01:49:38Z) - Unveiling Incomplete Modality Brain Tumor Segmentation: Leveraging Masked Predicted Auto-Encoder and Divergence Learning [6.44069573245889]
脳腫瘍のセグメンテーションは、特にマルチモーダルMRI(Multi-modal magnetic resonance imaging)における重要な課題である。
本稿では,不完全なモダリティデータから頑健な特徴学習を可能にする,マスク付き予測事前学習方式を提案する。
微調整段階において、我々は知識蒸留技術を用いて、完全なモダリティデータと欠落したモダリティデータの間に特徴を整列させ、同時にモデルロバスト性を向上する。
論文 参考訳(メタデータ) (2024-06-12T20:35:16Z) - Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
本論文は、任意のモーダリティ・サリエント物体検出(AM SOD)の課題について述べる。
任意のモダリティ、例えばRGBイメージ、RGB-Dイメージ、RGB-D-Tイメージから有能なオブジェクトを検出することを目的としている。
AM SODの2つの基本的な課題を解明するために,新しいモード適応トランス (MAT) を提案する。
論文 参考訳(メタデータ) (2024-05-06T11:02:02Z) - FedMM: Federated Multi-Modal Learning with Modality Heterogeneity in
Computational Pathology [3.802258033231335]
Federated Multi-Modal (FedMM) は、複数の単一モード特徴抽出器を訓練し、その後の分類性能を向上させる学習フレームワークである。
FedMMは、精度とAUCメトリクスの2つのベースラインを特に上回っている。
論文 参考訳(メタデータ) (2024-02-24T16:58:42Z) - Multi-Modal Federated Learning for Cancer Staging over Non-IID Datasets with Unbalanced Modalities [9.476402318365446]
本研究では,データサンプルの不均一性だけでなく,機関間のデータモダリティの固有不均一性と不均一性を両立する新しいFLアーキテクチャを提案する。
マルチモーダルFLに適した分散勾配ブレンディングと近接対応クライアント重み付け戦略を考案した。
論文 参考訳(メタデータ) (2024-01-07T23:45:01Z) - Superficial White Matter Analysis: An Efficient Point-cloud-based Deep
Learning Framework with Supervised Contrastive Learning for Consistent
Tractography Parcellation across Populations and dMRI Acquisitions [68.41088365582831]
ホワイトマターパーセレーション(White matter parcellation)は、トラクトグラフィーをクラスタまたは解剖学的に意味のあるトラクトに分類する。
ほとんどのパーセレーション法はディープホワイトマター(DWM)にフォーカスするが、その複雑さのため表面ホワイトマター(SWM)に対処する手法は少ない。
本稿では,2段階の深層学習に基づく新しいフレームワークであるSuperficial White Matter Analysis (SupWMA)を提案する。
論文 参考訳(メタデータ) (2022-07-18T23:07:53Z) - A Novel Unified Conditional Score-based Generative Framework for
Multi-modal Medical Image Completion [54.512440195060584]
我々は、スコアベース生成モデル(SGM)を活用するために、統一多モードスコアベース生成モデル(UMM-CSGM)を提案する。
UMM-CSGMは、新しいマルチインマルチアウトコンディションスコアネットワーク(mm-CSN)を用いて、クロスモーダル条件分布の包括的集合を学習する。
BraTS19データセットの実験により、UMM-CSGMは腫瘍誘発病変における不均一な増強と不規則な領域をより確実に合成できることが示された。
論文 参考訳(メタデータ) (2022-07-07T16:57:21Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
高品質なディープラーニングモデルを訓練するには,大量の患者情報を集める必要がある。
患者データのプライバシを保護する必要があるため、複数の機関から中央データベースを組み立てることは困難である。
フェデレート・ラーニング(Federated Learning)は、エンティティのデータを集中化せずに、人口レベルのモデルをトレーニングすることを可能にする。
論文 参考訳(メタデータ) (2020-01-16T04:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。