論文の概要: IMPACTX: Improving Model Performance by Appropriately predicting CorrecT eXplanations
- arxiv url: http://arxiv.org/abs/2502.12222v1
- Date: Mon, 17 Feb 2025 14:15:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:08:07.115859
- Title: IMPACTX: Improving Model Performance by Appropriately predicting CorrecT eXplanations
- Title(参考訳): IMPACTX: CorrecT eXplanations の適切な予測によるモデル性能の向上
- Authors: Andrea Apicella, Salvatore Giugliano, Francesco Isgrò, Roberto Prevete,
- Abstract要約: IMPACTXは、完全に自動化された注意機構としてXAIを活用する新しいアプローチである。
外部XAIメソッドに頼ることなく、モデルの判断に適切な機能属性マップを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The eXplainable Artificial Intelligence (XAI) research predominantly concentrates to provide explainations about AI model decisions, especially Deep Learning (DL) models. However, there is a growing interest in using XAI techniques to automatically improve the performance of the AI systems themselves. This paper proposes IMPACTX, a novel approach that leverages XAI as a fully automated attention mechanism, without requiring external knowledge or human feedback. Experimental results show that IMPACTX has improved performance respect to the standalone ML model by integrating an attention mechanism based an XAI method outputs during the model training. Furthermore, IMPACTX directly provides proper feature attribution maps for the model's decisions, without relying on external XAI methods during the inference process. Our proposal is evaluated using three widely recognized DL models (EfficientNet-B2, MobileNet, and LeNet-5) along with three standard image datasets: CIFAR-10, CIFAR-100, and STL-10. The results show that IMPACTX consistently improves the performance of all the inspected DL models across all evaluated datasets, and it directly provides appropriate explanations for its responses.
- Abstract(参考訳): eXplainable Artificial Intelligence(XAI)の研究は、主にAIモデル決定、特にディープラーニング(DL)モデルの説明を提供することに集中している。
しかし、AIシステム自体のパフォーマンスを自動改善するためにXAI技術を使うことへの関心が高まっている。
本稿では,XAIを外部知識や人的フィードバックを必要とせず,完全に自動化された注意機構として活用する新しいアプローチであるIMPACTXを提案する。
実験結果から,IMPACTXは,モデルトレーニング中にXAI方式で出力するアテンション機構を統合することにより,スタンドアロンMLモデルの性能を向上したことが示された。
さらにIMPACTXは、推論プロセス中に外部XAIメソッドに頼ることなく、モデルの決定に対して適切な特徴属性マップを直接提供します。
提案手法は,CIFAR-10,CIFAR-100,STL-10の3つの標準画像データセットとともに,広く認識されている3つのDLモデル(EfficientNet-B2,MobileNet,LeNet-5)を用いて評価する。
その結果、IMPACTXは全ての評価データセットで検査済みのDLモデルの性能を一貫して改善し、その応答に適切な説明を提供することがわかった。
関連論文リスト
- Explainable Artificial Intelligence for Dependent Features: Additive Effects of Collinearity [0.0]
本稿では,コリナリティ問題を考慮した新しいXAI手法として,コリナリティの付加効果(AEC)を提案する。
提案手法はシミュレーションデータと実データを用いて,芸術的XAI法と比較し,その効率性を検証した。
論文 参考訳(メタデータ) (2024-10-30T07:00:30Z) - SegXAL: Explainable Active Learning for Semantic Segmentation in Driving Scene Scenarios [1.2172320168050466]
XALに基づくセマンティックセグメンテーションモデル "SegXAL" を提案する。
SegXALは、(i)ラベルのないデータを効果的に活用し、(ii)"Human-in-the-loop"パラダイムを促進し、(iii)解釈可能な方法でモデル決定を強化する。
特に,シーン駆動シナリオにおけるセマンティックセグメンテーションに対するSegXALモデルの適用について検討する。
論文 参考訳(メタデータ) (2024-08-08T14:19:11Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
人工知能に基づく意思決定のサポートは、将来の6Gネットワークの重要な要素である。
このようなアプリケーションでは、ブラックボックスモデルとしてAIを使用するのは危険で難しい。
本稿では,無線通信におけるチャネル推定を目的とした新しいXAI-CHESTフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-09T16:24:21Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AIベースのアプリケーションは、スケジューリングや電力制御などの機能を実行するために、インテリジェントコントローラにデプロイされる。
コンテキストとAIモデルのパラメータのマッピングは、ゼロショット方式で理想的に行われる。
本稿では,AMSマッピングのオンライン最適化のための一般的な手法を紹介する。
論文 参考訳(メタデータ) (2024-06-22T11:17:50Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
本稿では,問題を自動的に識別し,データを効率よくキュレートし,自動ラベル付けによりモデルを改善する自動データエンジン(AIDE)を提案する。
さらに,AVデータセットのオープンワールド検出のためのベンチマークを構築し,様々な学習パラダイムを包括的に評価し,提案手法の優れた性能を低コストで実証する。
論文 参考訳(メタデータ) (2024-03-26T04:27:56Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
本稿では、REXと呼ばれるAIエージェントのための高速探索およびeXploitationのための改良されたアプローチを提案する。
REXは追加の報酬層を導入し、アッパー信頼境界(UCB)スコアに似た概念を統合し、より堅牢で効率的なAIエージェントのパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-07-18T04:26:33Z) - Strategies to exploit XAI to improve classification systems [0.0]
XAIは、AIモデルの意思決定プロセスに関する洞察を提供することを目的としている。
ほとんどのXAI文献は、AIシステムを説明する方法に焦点を当てているが、AIシステムを改善するためにXAIメソッドをどのように活用するかについては、あまり注目されていない。
論文 参考訳(メタデータ) (2023-06-09T10:38:26Z) - AUTOLYCUS: Exploiting Explainable AI (XAI) for Model Extraction Attacks against Interpretable Models [1.8752655643513647]
XAIツールは、モデル抽出攻撃の脆弱性を増大させる可能性がある。
そこで本研究では,ブラックボックス設定下での解釈可能なモデルに対して,新たなリトレーニング(学習)に基づくモデル抽出攻撃フレームワークを提案する。
AUTOLYCUSは非常に効果的で、最先端の攻撃に比べてクエリが大幅に少ないことが示される。
論文 参考訳(メタデータ) (2023-02-04T13:23:39Z) - Optimizing Explanations by Network Canonization and Hyperparameter
Search [74.76732413972005]
ルールベースで修正されたバックプロパゲーションXAIアプローチは、モダンなモデルアーキテクチャに適用される場合、しばしば課題に直面します。
モデルカノン化は、基礎となる機能を変更することなく問題のあるコンポーネントを無視してモデルを再構成するプロセスである。
本研究では、一般的なディープニューラルネットワークアーキテクチャに適用可能な、現在関連するモデルブロックのカノン化を提案する。
論文 参考訳(メタデータ) (2022-11-30T17:17:55Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。