論文の概要: Strategies to exploit XAI to improve classification systems
- arxiv url: http://arxiv.org/abs/2306.05801v1
- Date: Fri, 9 Jun 2023 10:38:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-12 13:47:27.948869
- Title: Strategies to exploit XAI to improve classification systems
- Title(参考訳): XAIを利用した分類システムの改善戦略
- Authors: Andrea Apicella, Luca Di Lorenzo, Francesco Isgr\`o, Andrea Pollastro,
Roberto Prevete
- Abstract要約: XAIは、AIモデルの意思決定プロセスに関する洞察を提供することを目的としている。
ほとんどのXAI文献は、AIシステムを説明する方法に焦点を当てているが、AIシステムを改善するためにXAIメソッドをどのように活用するかについては、あまり注目されていない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable Artificial Intelligence (XAI) aims to provide insights into the
decision-making process of AI models, allowing users to understand their
results beyond their decisions. A significant goal of XAI is to improve the
performance of AI models by providing explanations for their decision-making
processes. However, most XAI literature focuses on how to explain an AI system,
while less attention has been given to how XAI methods can be exploited to
improve an AI system. In this work, a set of well-known XAI methods typically
used with Machine Learning (ML) classification tasks are investigated to verify
if they can be exploited, not just to provide explanations but also to improve
the performance of the model itself. To this aim, two strategies to use the
explanation to improve a classification system are reported and empirically
evaluated on three datasets: Fashion-MNIST, CIFAR10, and STL10. Results suggest
that explanations built by Integrated Gradients highlight input features that
can be effectively used to improve classification performance.
- Abstract(参考訳): 説明可能な人工知能(XAI)は、AIモデルの意思決定プロセスに関する洞察を提供することを目的としている。
XAIの重要な目標は、意思決定プロセスの説明を提供することで、AIモデルのパフォーマンスを改善することである。
しかしながら、ほとんどのXAI文献は、AIシステムを説明する方法に焦点を当てているが、AIシステムを改善するためにXAIメソッドをどのように利用するかについてはあまり注目されていない。
本研究では、機械学習(ML)分類タスクで一般的に使用されるよく知られたXAI手法について、説明を提供するだけでなく、モデル自体の性能を向上させるためにも活用できるかどうかを検証する。
この目的のために、分類システムを改善するために、Fashion-MNIST、CIFAR10、STL10の3つのデータセットで説明を用いた2つの戦略を報告し、実証的に評価した。
その結果,統合勾配によって構築された説明は,分類性能向上に効果的に使用できる入力特徴を浮き彫りにすることが示唆された。
関連論文リスト
- Study on the Helpfulness of Explainable Artificial Intelligence [0.0]
法律、ビジネス、倫理的要件は、効果的なXAIの使用を動機付けている。
本稿では,ユーザがプロキシタスクをうまく実行する能力を通じて,XAI手法を評価することを提案する。
言い換えれば、人間の意思決定におけるXAIの有用性について論じる。
論文 参考訳(メタデータ) (2024-10-14T14:03:52Z) - Enhancing Feature Selection and Interpretability in AI Regression Tasks Through Feature Attribution [38.53065398127086]
本研究では、回帰問題に対する入力データの非形式的特徴をフィルタリングする特徴属性法の可能性について検討する。
我々は、初期データ空間から最適な変数セットを選択するために、統合グラディエントとk平均クラスタリングを組み合わせた機能選択パイプラインを導入する。
提案手法の有効性を検証するため, ターボ機械の開発過程における羽根振動解析を実世界の産業問題に適用した。
論文 参考訳(メタデータ) (2024-09-25T09:50:51Z) - Explainable AI for Enhancing Efficiency of DL-based Channel Estimation [1.0136215038345013]
人工知能に基づく意思決定のサポートは、将来の6Gネットワークの重要な要素である。
このようなアプリケーションでは、ブラックボックスモデルとしてAIを使用するのは危険で難しい。
本稿では,無線通信におけるチャネル推定を目的とした新しいXAI-CHESTフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-09T16:24:21Z) - Towards a general framework for improving the performance of classifiers using XAI methods [0.0]
本稿では,XAI手法を用いた事前学習型ディープラーニング(DL)分類器の性能向上のためのフレームワークを提案する。
オートエンコーダベースおよびエンコーダデコーダベースと呼び、それらの重要な側面について議論する。
論文 参考訳(メタデータ) (2024-03-15T15:04:20Z) - Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM Era [77.174117675196]
XAIはLarge Language Models (LLM)に拡張されている
本稿では,XAIがLLMやAIシステムにどのようなメリットをもたらすかを分析する。
10の戦略を導入し、それぞれに重要なテクニックを導入し、関連する課題について議論します。
論文 参考訳(メタデータ) (2024-03-13T20:25:27Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
XAIに対する個人化アプローチとユーザ中心アプローチの数は、近年急速に増加している。
ユーザ中心のXAIアプローチがユーザとシステム間のインタラクションに肯定的な影響を与えることが明らかとなった。
我々は,XAIシステムの良否を客観的かつ定量的に評価するための評価課題を提案する。
論文 参考訳(メタデータ) (2023-12-07T15:49:39Z) - Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal [0.0]
本研究は、説明可能な機械学習(XML)における既存の研究の徹底的なレビューを行う。
我々の主な目的は、XMLの領域内でXAIメソッドの分類を提供することです。
本稿では,ユーザとその所望のプロパティを考慮に入れたマッピング関数を提案し,XAI手法を提案する。
論文 参考訳(メタデータ) (2023-02-07T01:06:38Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。