論文の概要: Healthcare cost prediction for heterogeneous patient profiles using deep learning models with administrative claims data
- arxiv url: http://arxiv.org/abs/2502.12277v1
- Date: Mon, 17 Feb 2025 19:20:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:09:00.300969
- Title: Healthcare cost prediction for heterogeneous patient profiles using deep learning models with administrative claims data
- Title(参考訳): 管理請求データを用いた深層学習モデルを用いた不均一患者プロファイルの医療コスト予測
- Authors: Mohammad Amin Morid, Olivia R. Liu Sheng,
- Abstract要約: 本研究は,技術システムと人文主義的成果との相互作用を強調する社会技術的考察を基礎にしている。
本稿では,ACデータを別のチャネルに分割することで,データの均一性を緩和するチャネルワイドディープラーニングフレームワークを提案する。
提案されたチャネルワイドモデルは、単一チャネルモデルと比較して予測誤差を23%削減し、16.4%と19.3%の過払いと低給の削減につながった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Problem: How can we design patient cost prediction models that effectively address the challenges of heterogeneity in administrative claims (AC) data to ensure accurate, fair, and generalizable predictions, especially for high-need (HN) patients with complex chronic conditions? Relevance: Accurate and equitable patient cost predictions are vital for developing health management policies and optimizing resource allocation, which can lead to significant cost savings for healthcare payers, including government agencies and private insurers. Addressing disparities in prediction outcomes for HN patients ensures better economic and clinical decision-making, benefiting both patients and payers. Methodology: This study is grounded in socio-technical considerations that emphasize the interplay between technical systems (e.g., deep learning models) and humanistic outcomes (e.g., fairness in healthcare decisions). It incorporates representation learning and entropy measurement to address heterogeneity and complexity in data and patient profiles, particularly for HN patients. We propose a channel-wise deep learning framework that mitigates data heterogeneity by segmenting AC data into separate channels based on types of codes (e.g., diagnosis, procedures) and costs. This approach is paired with a flexible evaluation design that uses multi-channel entropy measurement to assess patient heterogeneity. Results: The proposed channel-wise models reduce prediction errors by 23% compared to single-channel models, leading to 16.4% and 19.3% reductions in overpayments and underpayments, respectively. Notably, the reduction in prediction bias is significantly higher for HN patients, demonstrating effectiveness in handling heterogeneity and complexity in data and patient profiles. This demonstrates the potential for applying channel-wise modeling to domains with similar heterogeneity challenges.
- Abstract(参考訳): 問題: 管理クレーム(AC)データにおける不均一性の課題を効果的に解決する患者コスト予測モデルを設計して、特に複雑な慢性疾患を有するハイネッド(HN)患者において、正確で公平で一般化可能な予測を確実にするにはどうすればよいか。
関連性: 医療管理方針の策定と資源配分の最適化には正確な患者コスト予測が不可欠であり、政府機関や民間保険会社を含む医療従事者にとって大幅なコスト削減につながる可能性がある。
HN患者に対する予測結果の相違に対処することで、経済的および臨床的意思決定が向上し、患者と支払者の双方に利益をもたらす。
方法論: この研究は、技術的システム(例えば、ディープラーニングモデル)とヒューマニズム的結果(例えば、医療決定における公正性)との相互作用を強調する社会技術的考察に基礎を置いている。
表現学習とエントロピー測定を取り入れ、特にHN患者のデータと患者プロファイルの不均一性と複雑さに対処する。
本稿では,ACデータをコードの種類(診断,手順など)とコストに基づいて,個別のチャネルに分割することで,データの均一性を緩和するチャネルワイドなディープラーニングフレームワークを提案する。
このアプローチは,多チャンネルエントロピー測定を用いて患者の不均一性を評価するフレキシブルな評価設計と組み合わせられる。
結果: 提案したチャネルワイドモデルはシングルチャネルモデルと比較して予測誤差を23%削減し, オーバーペイメントとアンダーペイメントをそれぞれ16.4%, 19.3%削減した。
特に、HN患者では予測バイアスの低減が著しく高く、データや患者プロファイルの不均一性や複雑さを扱う上での有効性が示された。
このことは、チャネルワイズ・モデリングを似たような異種性問題のある領域に適用する可能性を示している。
関連論文リスト
- Predictive and Prescriptive Analytics for Multi-Site Modeling of Frail and Elderly Patient Services [0.0]
本研究の目的は、需要が増大している医療分野における、様々な予測的、規範的分析手法が、運用上の課題にどのように貢献するかを評価することである。
規範的な面では、ベッドや病棟のスタッフを最適に計画する方法を決定するための決定論的プログラムと2段階プログラムが開発されている。
我々の研究は、医療管理者が予測モデルと規範モデルを使ってより情報的な意思決定を行うことを検討すべきであることを明らかにしている。
論文 参考訳(メタデータ) (2023-11-13T12:25:45Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
集中治療ユニット(ICU、Intensive Care Unit)は、重篤な患者を認め、継続的な監視と治療を提供する病院の最も重要な部分の1つである。
臨床意思決定における医療従事者を支援するために,様々な患者結果予測手法が試みられている。
論文 参考訳(メタデータ) (2023-08-24T05:26:56Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Building predictive models of healthcare costs with open healthcare data [0.0]
本稿では,機械学習技術を用いた予測モデル開発手法を提案する。
我々は2016年に230万件の患者データを分析した。
私たちは、患者の診断と人口統計からコストを予測するモデルを構築しました。
論文 参考訳(メタデータ) (2023-04-05T02:12:58Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - Predicting Visit Cost of Obstructive Sleep Apnea using Electronic
Healthcare Records with Transformer [0.0]
肥満の増加に伴い、多くの国で閉塞性睡眠時無呼吸症(OSA)が増加傾向にある。
治療目的では,OSA患者の来院費の予測が重要である。
OSA患者のデータのうち3分の1は、分析モデルのトレーニングに利用できる。
論文 参考訳(メタデータ) (2023-01-28T20:08:00Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Improving healthcare access management by predicting patient no-show
behaviour [0.0]
本研究は,参加を促す戦略の実装を支援するため,DSS(Decision Support System)を開発する。
回帰モデルの精度を向上させるために,異なる機械学習手法の有効性を評価する。
過去の研究で報告された関係の定量化に加えて、収入と近隣の犯罪統計はノーショー確率に影響を与えることが判明した。
論文 参考訳(メタデータ) (2020-12-10T14:57:25Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。