論文の概要: IMLE Policy: Fast and Sample Efficient Visuomotor Policy Learning via Implicit Maximum Likelihood Estimation
- arxiv url: http://arxiv.org/abs/2502.12371v1
- Date: Mon, 17 Feb 2025 23:22:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:07:34.560597
- Title: IMLE Policy: Fast and Sample Efficient Visuomotor Policy Learning via Implicit Maximum Likelihood Estimation
- Title(参考訳): IMLE ポリシー: インシシット最大様相推定による高速かつ高効率なバイスモータ政策学習
- Authors: Krishan Rana, Robert Lee, David Pershouse, Niko Suenderhauf,
- Abstract要約: IMLEポリシーは、Implicit Maximum Likelihood Estimation (IMLE)に基づく新しい行動クローニング手法である
複雑なマルチモーダルな振る舞いを学ぶ上で、ベースラインメソッドのパフォーマンスに合わせるために、最小限のデモから効果的に学習し、平均で38%のデータを必要とします。
シミュレーションおよび実環境における多様な操作タスクに対するアプローチを検証し、データ制約下で複雑な振る舞いをキャプチャする能力を示す。
- 参考スコア(独自算出の注目度): 3.7584322469996896
- License:
- Abstract: Recent advances in imitation learning, particularly using generative modelling techniques like diffusion, have enabled policies to capture complex multi-modal action distributions. However, these methods often require large datasets and multiple inference steps for action generation, posing challenges in robotics where the cost for data collection is high and computation resources are limited. To address this, we introduce IMLE Policy, a novel behaviour cloning approach based on Implicit Maximum Likelihood Estimation (IMLE). IMLE Policy excels in low-data regimes, effectively learning from minimal demonstrations and requiring 38\% less data on average to match the performance of baseline methods in learning complex multi-modal behaviours. Its simple generator-based architecture enables single-step action generation, improving inference speed by 97.3\% compared to Diffusion Policy, while outperforming single-step Flow Matching. We validate our approach across diverse manipulation tasks in simulated and real-world environments, showcasing its ability to capture complex behaviours under data constraints. Videos and code are provided on our project page: https://imle-policy.github.io/.
- Abstract(参考訳): 近年の模倣学習の進歩、特に拡散のような生成的モデリング技術は、複雑なマルチモーダルな行動分布を捉える政策を可能にしている。
しかしながら、これらの手法は、大規模なデータセットとアクション生成のための複数の推論ステップを必要とすることが多く、データ収集のコストが高く、計算資源が限られているロボット工学における課題を提起する。
そこで本研究では,Implicit Maximum Likelihood Estimation (IMLE)に基づく行動クローニング手法であるIMLE Policyを紹介する。
IMLEポリシーは、低データのレシエーションに優れ、最小限のデモから効果的に学習し、複雑なマルチモーダルな振る舞いを学ぶためのベースラインメソッドのパフォーマンスに合わせるために、平均で38%のデータを必要とします。
単純なジェネレータベースのアーキテクチャでは、単一ステップのアクション生成が可能で、Diffusion Policyと比較して推論速度が97.3倍向上し、単ステップのフローマッチングよりも優れている。
シミュレーションおよび実環境における多様な操作タスクに対するアプローチを検証し、データ制約下で複雑な振る舞いをキャプチャする能力を示す。
ビデオとコードはプロジェクトページで公開されています。
関連論文リスト
- STRAP: Robot Sub-Trajectory Retrieval for Augmented Policy Learning [8.860366821983211]
STRAPは、トレーニング済みの視覚基盤モデルと動的時間ワープを利用して、大規模なトレーニングコーパスからトラジェクトリのサブシーケンスを堅牢に検索する技術である。
本研究では、事前学習された視覚基盤モデルと動的時間ワープを活用して、大規模学習コーパスからのトラジェクトリのサブシーケンスをロバストに検索するSTRAPを提案する。
論文 参考訳(メタデータ) (2024-12-19T18:54:06Z) - Learning on One Mode: Addressing Multi-Modality in Offline Reinforcement Learning [9.38848713730931]
オフライン強化学習は、環境と対話することなく、静的データセットから最適なポリシーを学習しようとする。
既存の方法は、しばしば一助的行動ポリシーを仮定し、この仮定が破られたとき、最適以下のパフォーマンスをもたらす。
行動方針の単一かつ有望なモードから学習することに焦点を当てた新しいアプローチであるLOM(Weighted Imitation Learning on One Mode)を提案する。
論文 参考訳(メタデータ) (2024-12-04T11:57:36Z) - Amortizing intractable inference in large language models [56.92471123778389]
難治性後部分布のサンプルとして, 償却ベイズ推定を用いる。
我々は,LLMファインチューニングの分散マッチングパラダイムが,最大習熟の代替となることを実証的に実証した。
重要な応用として、チェーン・オブ・ソート推論を潜在変数モデリング問題として解釈する。
論文 参考訳(メタデータ) (2023-10-06T16:36:08Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Information Maximizing Curriculum: A Curriculum-Based Approach for
Imitating Diverse Skills [14.685043874797742]
本稿では,各データポイントに重みを割り当て,表現可能なデータに特化するようにモデルに促すカリキュラムベースのアプローチを提案する。
すべてのモードをカバーし、多様な振る舞いを可能にするため、我々は、各ミックスコンポーネントが学習のためのトレーニングデータの独自のサブセットを選択する、専門家(MoE)ポリシーの混合にアプローチを拡張します。
データセットの完全なカバレッジを実現するために,新たな最大エントロピーに基づく目標を提案する。
論文 参考訳(メタデータ) (2023-03-27T16:02:50Z) - Diffusion Policies as an Expressive Policy Class for Offline
Reinforcement Learning [70.20191211010847]
オフライン強化学習(RL)は、以前に収集した静的データセットを使って最適なポリシーを学ぶことを目的としている。
本稿では,条件付き拡散モデルを用いたディフュージョンQ-ラーニング(Diffusion-QL)を提案する。
本手法はD4RLベンチマークタスクの大部分において最先端の性能を実現することができることを示す。
論文 参考訳(メタデータ) (2022-08-12T09:54:11Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
本研究の目的は,モデルベース学習によるマルチエージェント制御のデータ効率の向上である。
エージェントが協力的であり、隣人とのみローカルに通信するネットワークシステムについて検討する。
提案手法では,各エージェントが将来の状態を予測し,通信によって予測をブロードキャストする動的モデルを学習し,その後,モデルロールアウトに基づいてポリシーをトレーニングする。
論文 参考訳(メタデータ) (2022-07-13T23:52:14Z) - Latent-Variable Advantage-Weighted Policy Optimization for Offline RL [70.01851346635637]
オフラインの強化学習メソッドは、新しいトランジションを環境に問い合わせる必要なしに、事前にコンパイルされたデータセットから学習ポリシーを保証します。
実際には、オフラインデータセットは、しばしば異種、すなわち様々なシナリオで収集される。
より広範な政策分布を表現できる潜在変数ポリシーを活用することを提案する。
提案手法は,次回のオフライン強化学習法の性能を,異種データセット上で49%向上させる。
論文 参考訳(メタデータ) (2022-03-16T21:17:03Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
本稿では,テスト時にアウト・オブ・ディストリビューション・タスクに直面した場合に,効率よく外挿できるメタ強化学習アルゴリズムを提案する。
我々の手法は単純な洞察に基づいており、動的モデルが非政治データに効率的かつ一貫して適応可能であることを認識している。
論文 参考訳(メタデータ) (2020-06-12T13:34:46Z) - Deployment-Efficient Reinforcement Learning via Model-Based Offline
Optimization [46.017212565714175]
本稿では,政策学習に使用される異なるデータ収集ポリシーの数を測定する,展開効率の新たな概念を提案する。
本研究では,従来よりも10~20倍少ないデータを用いてオフラインでポリシーを効果的に最適化できるモデルベースアルゴリズムBREMENを提案する。
論文 参考訳(メタデータ) (2020-06-05T19:33:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。