論文の概要: STRAP: Robot Sub-Trajectory Retrieval for Augmented Policy Learning
- arxiv url: http://arxiv.org/abs/2412.15182v1
- Date: Thu, 19 Dec 2024 18:54:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:29:23.135296
- Title: STRAP: Robot Sub-Trajectory Retrieval for Augmented Policy Learning
- Title(参考訳): STRAP:Augmented Policy Learningのためのロボットサブトラジェクトリ検索
- Authors: Marius Memmel, Jacob Berg, Bingqing Chen, Abhishek Gupta, Jonathan Francis,
- Abstract要約: STRAPは、トレーニング済みの視覚基盤モデルと動的時間ワープを利用して、大規模なトレーニングコーパスからトラジェクトリのサブシーケンスを堅牢に検索する技術である。
本研究では、事前学習された視覚基盤モデルと動的時間ワープを活用して、大規模学習コーパスからのトラジェクトリのサブシーケンスをロバストに検索するSTRAPを提案する。
- 参考スコア(独自算出の注目度): 8.860366821983211
- License:
- Abstract: Robot learning is witnessing a significant increase in the size, diversity, and complexity of pre-collected datasets, mirroring trends in domains such as natural language processing and computer vision. Many robot learning methods treat such datasets as multi-task expert data and learn a multi-task, generalist policy by training broadly across them. Notably, while these generalist policies can improve the average performance across many tasks, the performance of generalist policies on any one task is often suboptimal due to negative transfer between partitions of the data, compared to task-specific specialist policies. In this work, we argue for the paradigm of training policies during deployment given the scenarios they encounter: rather than deploying pre-trained policies to unseen problems in a zero-shot manner, we non-parametrically retrieve and train models directly on relevant data at test time. Furthermore, we show that many robotics tasks share considerable amounts of low-level behaviors and that retrieval at the "sub"-trajectory granularity enables significantly improved data utilization, generalization, and robustness in adapting policies to novel problems. In contrast, existing full-trajectory retrieval methods tend to underutilize the data and miss out on shared cross-task content. This work proposes STRAP, a technique for leveraging pre-trained vision foundation models and dynamic time warping to retrieve sub-sequences of trajectories from large training corpora in a robust fashion. STRAP outperforms both prior retrieval algorithms and multi-task learning methods in simulated and real experiments, showing the ability to scale to much larger offline datasets in the real world as well as the ability to learn robust control policies with just a handful of real-world demonstrations.
- Abstract(参考訳): ロボット学習は、自然言語処理やコンピュータビジョンといった領域におけるトレンドを反映して、事前にコンパイルされたデータセットのサイズ、多様性、複雑さが大幅に増加するのを目撃している。
多くのロボット学習手法は、そのようなデータセットをマルチタスクの専門家データとして扱い、多タスクのジェネラリストポリシーを広く訓練することで学習する。
特に、これらのジェネラリストポリシーは、多くのタスクにおける平均的なパフォーマンスを改善することができるが、特定のタスクにおけるジェネラリストポリシーのパフォーマンスは、タスク固有のスペシャリストポリシーと比較して、データのパーティション間の負の移動により、しばしば最適以下である。
ゼロショットで問題を確認するために事前訓練されたポリシーをデプロイするのではなく、テスト時に関連するデータに基づいてモデルを非パラメトリックに検索し、トレーニングする。
さらに,多くのロボティクスタスクが大量の低レベル動作を共有しており,"サブ"軌道の粒度での検索により,新たな問題へのポリシー適用におけるデータ利用,一般化,ロバスト性を著しく向上させることができることを示す。
対照的に、既存の全軌跡検索手法は、データを過小評価し、共有したクロスタスクコンテンツを見逃す傾向にある。
本研究では、事前学習された視覚基盤モデルと動的時間ワープを活用して、大規模学習コーパスからのトラジェクトリのサブシーケンスをロバストに検索するSTRAPを提案する。
STRAPは、シミュレーションおよび実際の実験において、事前の検索アルゴリズムとマルチタスク学習方法の両方より優れており、実世界のはるかに大きなオフラインデータセットにスケールする能力と、少数の実世界のデモで堅牢な制御ポリシーを学ぶ能力を示している。
関連論文リスト
- Steering Your Generalists: Improving Robotic Foundation Models via Value Guidance [66.51390591688802]
バリューガイド型ポリシーステアリング(V-GPS)は、ポリシーの重みを微調整したり、アクセスしたりすることなく、幅広い種類のジェネラリストポリシーと互換性がある。
同じ値関数は、異なるアーキテクチャで5つの最先端ポリシーの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-10-17T17:46:26Z) - Disentangling Policy from Offline Task Representation Learning via
Adversarial Data Augmentation [29.49883684368039]
オフラインメタ強化学習(OMRL)は、静的データセットに依存して、エージェントが新しいタスクに取り組むことができる。
本稿では,タスク表現学習から行動ポリシーの影響を解き放つ新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-12T02:38:36Z) - PoCo: Policy Composition from and for Heterogeneous Robot Learning [44.1315170137613]
現在のメソッドは通常、1つのポリシーをトレーニングするために、1つのドメインからすべてのデータを収集し、プールします。
多様なモダリティやドメインにまたがる情報を組み合わせるための,ポリシ・コンポジションと呼ばれる柔軟なアプローチを提案する。
提案手法はタスクレベルの構成をマルチタスク操作に使用することができ,分析コスト関数を用いて推論時のポリシー動作を適応させることができる。
論文 参考訳(メタデータ) (2024-02-04T14:51:49Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Generalization with Lossy Affordances: Leveraging Broad Offline Data for
Learning Visuomotor Tasks [65.23947618404046]
本研究では,広範囲なデータを用いたオフライン強化学習を通じて,時間的拡張タスクの目標条件付きポリシを取得するフレームワークを提案する。
新たなタスク目標に直面した場合、フレームワークは余裕モデルを使用して、元のタスクをより簡単な問題に分解するサブゴールとして、損失のある表現のシーケンスを計画する。
我々は,従来の作業からロボット体験の大規模データセットを事前学習し,手動の報酬工学を使わずに視覚入力から,新しいタスクを効率的に微調整できることを実証した。
論文 参考訳(メタデータ) (2022-10-12T21:46:38Z) - Self-Supervised Learning of Multi-Object Keypoints for Robotic
Manipulation [8.939008609565368]
本稿では,下流政策学習におけるDense Cor correspondence pretext Taskによる画像キーポイントの学習の有効性を示す。
我々は,多様なロボット操作タスクに対するアプローチを評価し,他の視覚表現学習手法と比較し,その柔軟性と有効性を示した。
論文 参考訳(メタデータ) (2022-05-17T13:15:07Z) - Efficient Self-Supervised Data Collection for Offline Robot Learning [17.461103383630853]
ロボット強化学習の実用的なアプローチは、まずリアルまたはシミュレートされたロボット相互作用データの大規模なバッチを収集することです。
我々は,新しい観測結果にデータ収集を積極的に焦点をあてる,簡便な目標条件強化学習法を開発した。
論文 参考訳(メタデータ) (2021-05-10T18:42:58Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
そこで本研究では,実験で得られた複雑なインプット・アウトプット関係を事前に学習する手法を提案する。
RLエージェントが新規な動作を試す能力を阻害することなく、この学習が新しいタスクを迅速に学習するのにどのように役立つかを示す。
論文 参考訳(メタデータ) (2020-11-19T18:47:40Z) - Meta-Reinforcement Learning Robust to Distributional Shift via Model
Identification and Experience Relabeling [126.69933134648541]
本稿では,テスト時にアウト・オブ・ディストリビューション・タスクに直面した場合に,効率よく外挿できるメタ強化学習アルゴリズムを提案する。
我々の手法は単純な洞察に基づいており、動的モデルが非政治データに効率的かつ一貫して適応可能であることを認識している。
論文 参考訳(メタデータ) (2020-06-12T13:34:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。