論文の概要: Time Series Treatment Effects Analysis with Always-Missing Controls
- arxiv url: http://arxiv.org/abs/2502.12393v1
- Date: Tue, 18 Feb 2025 00:03:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:09:36.592449
- Title: Time Series Treatment Effects Analysis with Always-Missing Controls
- Title(参考訳): Always-Missing Controls を用いた時系列処理効果の解析
- Authors: Juan Shu, Qiyu Han, George Chen, Xihao Cao, Kangming Luo, Dan Pallotta, Shivam Agrawal, Yuping Lu, Xiaoyu Zhang, Jawad Mansoor, Jyoti Anand,
- Abstract要約: 共同創設者と時間的依存関係を考慮に入れながら、イベント期間中にコントロールグループを回復しようとします。
M5 Walmartの小売売上高データに関する実験結果は、潜在的な成果をしっかりと見積もっている。
提案手法は, 常に欠落する制御シナリオだけでなく, 従来の時系列因果推論設定にも適用可能である。
- 参考スコア(独自算出の注目度): 6.345556705290927
- License:
- Abstract: Estimating treatment effects in time series data presents a significant challenge, especially when the control group is always unobservable. For example, in analyzing the effects of Christmas on retail sales, we lack direct observation of what would have occurred in late December without the Christmas impact. To address this, we try to recover the control group in the event period while accounting for confounders and temporal dependencies. Experimental results on the M5 Walmart retail sales data demonstrate robust estimation of the potential outcome of the control group as well as accurate predicted holiday effect. Furthermore, we provided theoretical guarantees for the estimated treatment effect, proving its consistency and asymptotic normality. The proposed methodology is applicable not only to this always-missing control scenario but also in other conventional time series causal inference settings.
- Abstract(参考訳): 時系列データにおける治療効果の推定は、特に制御群が常に観測不能である場合、大きな課題となる。
例えば、クリスマスが小売販売に与える影響を分析する際には、クリスマスの影響なしに12月下旬に起こったことを直接観察することができない。
これを解決するために、私たちは、共同創設者と時間的依存関係を考慮しながら、イベント期間中にコントロールグループを回復しようとします。
M5 Walmartの小売販売データに関する実験結果は、コントロールグループの潜在的な成果と正確なホリデー効果をしっかりと見積もっている。
さらに, 評価された治療効果の理論的保証を行い, その一貫性と漸近正常性を証明した。
提案手法は, 常に欠落する制御シナリオだけでなく, 従来の時系列因果推論設定にも適用可能である。
関連論文リスト
- Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Improved Sales Forecasting using Trend and Seasonality Decomposition
with LightGBM [9.788039182463768]
時系列上での傾向と季節成分のユニークな影響を示すための新しい尺度を提案する。
実験の結果,提案手法は精度を向上できることがわかった。
論文 参考訳(メタデータ) (2023-05-26T18:49:42Z) - Estimating Treatment Effects from Irregular Time Series Observations
with Hidden Confounders [15.41689729746877]
実世界の時系列には、大規模で不規則で断続的な時系列観測が含まれる。
隠れた共同創設者の存在は 偏見のある治療推定につながる
不規則なサンプルによる連続的な時間設定では、因果関係のダイナミクスを直接扱うことは困難である。
論文 参考訳(メタデータ) (2023-03-04T04:55:34Z) - Recovering Sparse and Interpretable Subgroups with Heterogeneous
Treatment Effects with Censored Time-to-Event Outcomes [14.928328404160299]
本研究では,スパース表現群(またはサブタイプ)の回復に対する統計的アプローチを提案する。
そこで本研究では, 循環器系医療における重要な臨床研究において, スパース表現型を回収するための新しい推論手法を提案し, その有効性を示した。
論文 参考訳(メタデータ) (2023-02-24T08:10:23Z) - Understanding the Impact of Competing Events on Heterogeneous Treatment
Effect Estimation from Time-to-Event Data [92.51773744318119]
本研究では,競合イベントの存在下での時間-時間データからヘテロジニアス処理効果(HTE)を推定する問題について検討する。
提案手法は,HTEを推定するための結果モデリング手法であり,既存の時間-時間データの予測モデルを,将来的な結果のプラグイン推定手段としてどのように利用できるかを検討する。
HTEの推定に汎用的な機械学習予測モデルを使用する場合、これらの課題がいつどのように機能するかを理論的に分析し、実証的に説明する。
論文 参考訳(メタデータ) (2023-02-23T14:28:55Z) - Falsification before Extrapolation in Causal Effect Estimation [6.715453431174765]
個体群における因果関係は、しばしば観測データを用いて推定される。
本稿では,偏りのある観測推定を拒否するメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-27T21:47:23Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - How to Train Your Flare Prediction Model: Revisiting Robust Sampling of
Rare Events [0.9851812512860351]
本稿では,メタデータの特徴時系列による太陽フレア予測のケーススタディとして,顕著なクラス不均衡と時間的コヒーレントな問題として扱う。
時系列予測における連続性の要求によって引き起こされる時間的コヒーレンスの概念を概観し、この効果の適切な理解の欠如がモデルの性能を飛躍的に向上させることを示した。
これらの課題に対する主要な改善策を再考し、これらの改善がパフォーマンスに与える影響を正確に示すいくつかの実験を示す。
論文 参考訳(メタデータ) (2021-03-12T21:37:08Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。