Multi Image Super Resolution Modeling for Earth System Models
- URL: http://arxiv.org/abs/2502.12427v1
- Date: Tue, 18 Feb 2025 01:52:41 GMT
- Title: Multi Image Super Resolution Modeling for Earth System Models
- Authors: Ehsan Zeraatkar, Salah A Faroughi, Jelena Tešić,
- Abstract summary: Super-resolution (SR) techniques are essential for improving Earth System Model (ESM) data's spatial resolution.
This paper presents a new algorithm, ViFOR, which combines Vision Transformers (ViT) and Implicit Neural Representation Networks (INRs) to generate High-Resolution (HR) images from Low-Resolution (LR) inputs.
- Score: 0.0
- License:
- Abstract: Super-resolution (SR) techniques are essential for improving Earth System Model (ESM) data's spatial resolution, which helps better understand complex environmental processes. This paper presents a new algorithm, ViFOR, which combines Vision Transformers (ViT) and Implicit Neural Representation Networks (INRs) to generate High-Resolution (HR) images from Low-Resolution (LR) inputs. ViFOR introduces a novel integration of Fourier-based activation functions within the Vision Transformer architecture, enabling it to effectively capture global context and high-frequency details critical for accurate SR reconstruction. The results show that ViFOR outperforms state-of-the-art methods such as ViT, Sinusoidal Representation Networks (SIREN), and SR Generative Adversarial Networks (SRGANs) based on metrics like Peak Signal-to-Noise Ratio (PSNR) and Mean Squared Error (MSE) both for global as well as the local imagery. ViFOR improves PSNR of up to 4.18 dB, 1.56 dB, and 1.73 dB over ViT for full images in the Source Temperature, Shortwave, and Longwave Flux.
Related papers
- ViSIR: Vision Transformer Single Image Reconstruction Method for Earth System Models [0.0]
Earth system models (ESMs) integrate the interactions of the atmosphere, ocean, land, ice, and biosphere to estimate the state of regional and global climate.
We propose the Vision Transformer Sinusoidal Representation Networks (ViSIR) to improve the single image SR (SR) reconstruction task for the ESM data.
arXiv Detail & Related papers (2025-02-10T18:09:45Z) - GDSR: Global-Detail Integration through Dual-Branch Network with Wavelet Losses for Remote Sensing Image Super-Resolution [30.21425157733119]
We introduce Receptance Weighted Key Value (RWKV) to Remote Sensing Image (RSI) Super-Resolution (SR)
To simultaneously model global and local features, we propose the Global-Detail dual-branch structure, GDSR, which performs SR reconstruction by paralleling RWKV and convolutional operations to handle large-scale RSIs.
In addition, we propose Wavelet Loss, a loss function that effectively captures high-frequency detail information in images, thereby enhancing the visual quality of SR, particularly in terms of detail reconstruction.
arXiv Detail & Related papers (2024-12-31T10:43:19Z) - Training Transformer Models by Wavelet Losses Improves Quantitative and Visual Performance in Single Image Super-Resolution [6.367865391518726]
Transformer-based models have achieved remarkable results in low-level vision tasks including image super-resolution (SR)
To activate more input pixels globally, hybrid attention models have been proposed.
We employ wavelet losses to train Transformer models to improve quantitative and subjective performance.
arXiv Detail & Related papers (2024-04-17T11:25:19Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
Image distortion by atmospheric turbulence is a critical problem in long-range optical imaging systems.
Fast and physics-grounded simulation tools have been introduced to help the deep-learning models adapt to real-world turbulence conditions.
This paper proposes the Physics-integrated Restoration Network (PiRN) to help the network to disentangle theity from the degradation and the underlying image.
arXiv Detail & Related papers (2023-07-20T05:49:21Z) - Recursive Generalization Transformer for Image Super-Resolution [108.67898547357127]
We propose the Recursive Generalization Transformer (RGT) for image SR, which can capture global spatial information and is suitable for high-resolution images.
We combine the RG-SA with local self-attention to enhance the exploitation of the global context.
Our RGT outperforms recent state-of-the-art methods quantitatively and qualitatively.
arXiv Detail & Related papers (2023-03-11T10:44:44Z) - DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution [15.694407977871341]
Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation.
Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels.
We propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.
arXiv Detail & Related papers (2022-12-15T04:34:57Z) - Contextual Learning in Fourier Complex Field for VHR Remote Sensing
Images [64.84260544255477]
transformer-based models demonstrated outstanding potential for learning high-order contextual relationships from natural images with general resolution (224x224 pixels)
We propose a complex self-attention (CSA) mechanism to model the high-order contextual information with less than half computations of naive SA.
By stacking various layers of CSA blocks, we propose the Fourier Complex Transformer (FCT) model to learn global contextual information from VHR aerial images.
arXiv Detail & Related papers (2022-10-28T08:13:33Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - Fourier Space Losses for Efficient Perceptual Image Super-Resolution [131.50099891772598]
We show that it is possible to improve the performance of a recently introduced efficient generator architecture solely with the application of our proposed loss functions.
We show that our losses' direct emphasis on the frequencies in Fourier-space significantly boosts the perceptual image quality.
The trained generator achieves comparable results with and is 2.4x and 48x faster than state-of-the-art perceptual SR methods RankSRGAN and SRFlow respectively.
arXiv Detail & Related papers (2021-06-01T20:34:52Z) - Deep Cyclic Generative Adversarial Residual Convolutional Networks for
Real Image Super-Resolution [20.537597542144916]
We consider a deep cyclic network structure to maintain the domain consistency between the LR and HR data distributions.
We propose the Super-Resolution Residual Cyclic Generative Adversarial Network (SRResCycGAN) by training with a generative adversarial network (GAN) framework for the LR to HR domain translation.
arXiv Detail & Related papers (2020-09-07T11:11:18Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.