SAFEERASER: Enhancing Safety in Multimodal Large Language Models through Multimodal Machine Unlearning
- URL: http://arxiv.org/abs/2502.12520v1
- Date: Tue, 18 Feb 2025 04:09:46 GMT
- Title: SAFEERASER: Enhancing Safety in Multimodal Large Language Models through Multimodal Machine Unlearning
- Authors: Junkai Chen, Zhijie Deng, Kening Zheng, Yibo Yan, Shuliang Liu, PeiJun Wu, Peijie Jiang, Jia Liu, Xuming Hu,
- Abstract summary: We propose SAFEERASER, a safety unlearning benchmark for Multimodal Large Language Models (MLLMs)
We comprehensively evaluate unlearning methods from two perspectives: forget quality and model utility.
Experimental results demonstrate that combining PD Loss with existing unlearning methods can effectively prevent over-forgetting.
- Score: 19.9759585536617
- License:
- Abstract: As Multimodal Large Language Models (MLLMs) develop, their potential security issues have become increasingly prominent. Machine Unlearning (MU), as an effective strategy for forgetting specific knowledge in training data, has been widely used in privacy protection. However, MU for safety in MLLM has yet to be fully explored. To address this issue, we propose SAFEERASER, a safety unlearning benchmark for MLLMs, consisting of 3,000 images and 28.8K VQA pairs. We comprehensively evaluate unlearning methods from two perspectives: forget quality and model utility. Our findings show that existing MU methods struggle to maintain model performance while implementing the forget operation and often suffer from over-forgetting. Hence, we introduce Prompt Decouple (PD) Loss to alleviate over-forgetting through decouple prompt during unlearning process. To quantitatively measure over-forgetting mitigated by PD Loss, we propose a new metric called Safe Answer Refusal Rate (SARR). Experimental results demonstrate that combining PD Loss with existing unlearning methods can effectively prevent over-forgetting and achieve a decrease of 79.5% in the SARR metric of LLaVA-7B and LLaVA-13B, while maintaining forget quality and model utility. Our code and dataset will be released upon acceptance. Warning: This paper contains examples of harmful language and images, and reader discretion is recommended.
Related papers
- Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods [1.9799527196428242]
Large language model unlearning aims to remove harmful information that LLMs have learnt to prevent their use for malicious purposes.
LMU and RMU have been proposed as two methods for LLM unlearning, achieving impressive results on unlearning benchmarks.
arXiv Detail & Related papers (2024-11-18T22:31:17Z) - A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns.
We discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches.
arXiv Detail & Related papers (2024-10-10T16:56:05Z) - HarmAug: Effective Data Augmentation for Knowledge Distillation of Safety Guard Models [92.85175340702125]
We distill a large teacher safety guard model into a smaller one using a labeled dataset of instruction-response pairs with binary harmfulness labels.
We propose HarmAug, a simple yet effective data augmentation method that involves jailbreaking an LLM and prompting it to generate harmful instructions.
Our HarmAug achieves an F1 score comparable to larger models with over 7 billion parameters, and even outperforms them in AUPRC, while operating at less than 25% of their computational cost.
arXiv Detail & Related papers (2024-10-02T13:12:13Z) - MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts [29.593170782882563]
Large Language Models (LLMs) can memorize sensitive information, raising concerns about potential misuse.
Previous practices face three key challenges: Utility, efficiency, and robustness.
We propose MEOW, a gradient descent-based unlearning method.
arXiv Detail & Related papers (2024-09-18T09:55:48Z) - CoCA: Regaining Safety-awareness of Multimodal Large Language Models with Constitutional Calibration [90.36429361299807]
multimodal large language models (MLLMs) have demonstrated remarkable success in engaging in conversations involving visual inputs.
The integration of visual modality has introduced a unique vulnerability: the MLLM becomes susceptible to malicious visual inputs.
We introduce a technique termed CoCA, which amplifies the safety-awareness of the MLLM by calibrating its output distribution.
arXiv Detail & Related papers (2024-09-17T17:14:41Z) - SLM as Guardian: Pioneering AI Safety with Small Language Models [6.799423428734095]
Internalizing safeguard features into larger models brought challenges of higher training cost and unintended degradation of helpfulness.
In this paper, we leverage a smaller LLM for both harmful query detection and safeguard response generation.
We demonstrate the effectiveness of our approach, providing on par or surpassing harmful query detection and safeguard response performance compared to the publicly available LLMs.
arXiv Detail & Related papers (2024-05-30T08:03:15Z) - Single Image Unlearning: Efficient Machine Unlearning in Multimodal Large Language Models [13.08771725554285]
We propose an efficient method, Single Image Unlearning (SIU), to unlearn the visual recognition of a concept by fine-tuning a single associated image for few steps.
Experimental results on MMUBench show that SIU completely surpasses the performance of existing methods.
arXiv Detail & Related papers (2024-05-21T06:27:12Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
Multimodal Large Language Model (MLLM) relies on the powerful LLM to perform multimodal tasks.
This paper presents the first comprehensive MLLM Evaluation benchmark MME.
It measures both perception and cognition abilities on a total of 14 subtasks.
arXiv Detail & Related papers (2023-06-23T09:22:36Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
We propose a novel training framework based on a relaxed loss with a more achievable learning target.
RelaxLoss is applicable to any classification model with added benefits of easy implementation and negligible overhead.
Our approach consistently outperforms state-of-the-art defense mechanisms in terms of resilience against MIAs.
arXiv Detail & Related papers (2022-07-12T19:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.