DeltaDiff: A Residual-Guided Diffusion Model for Enhanced Image Super-Resolution
- URL: http://arxiv.org/abs/2502.12567v1
- Date: Tue, 18 Feb 2025 06:07:14 GMT
- Title: DeltaDiff: A Residual-Guided Diffusion Model for Enhanced Image Super-Resolution
- Authors: Chao Yang, Yong Fan, Cheng Lu, Zhijing Yang,
- Abstract summary: We propose a new diffusion model called Deltadiff, which uses only residuals between images for diffusion.
Our method surpasses state-of-the-art models and generates results with better fidelity.
- Score: 9.948203187433196
- License:
- Abstract: Recently, the application of diffusion models in super-resolution tasks has become a popular research direction. Existing work is focused on fully migrating diffusion models to SR tasks. The diffusion model is proposed in the field of image generation, so in order to make the generated results diverse, the diffusion model combines random Gaussian noise and distributed sampling to increase the randomness of the model. However, the essence of super-resolution tasks requires the model to generate high-resolution images with fidelity. Excessive addition of random factors can result in the model generating detailed information that does not belong to the HR image. To address this issue, we propose a new diffusion model called Deltadiff, which uses only residuals between images for diffusion, making the entire diffusion process more stable. The experimental results show that our method surpasses state-of-the-art models and generates results with better fidelity. Our code and model are publicly available at https://github.com/continueyang/DeltaDiff
Related papers
- Non-Normal Diffusion Models [3.5534933448684134]
Diffusion models generate samples by incrementally reversing a process that turns data into noise.
We show that when the step size goes to zero, the reversed process is invariant to the distribution of these increments.
We demonstrate the effectiveness of these models on density estimation and generative modeling tasks on standard image datasets.
arXiv Detail & Related papers (2024-12-10T21:31:12Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - Exploring the Optimal Choice for Generative Processes in Diffusion
Models: Ordinary vs Stochastic Differential Equations [6.2284442126065525]
We study the problem mathematically for two limiting scenarios: the zero diffusion (ODE) case and the large diffusion case.
Our findings indicate that when the perturbation occurs at the end of the generative process, the ODE model outperforms the SDE model with a large diffusion coefficient.
arXiv Detail & Related papers (2023-06-03T09:27:15Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - DDRF: Denoising Diffusion Model for Remote Sensing Image Fusion [7.06521373423708]
Denosing diffusion model, as a generative model, has received a lot of attention in the field of image generation.
We introduce diffusion model to the image fusion field, treating the image fusion task as image-to-image translation.
Our method can inspire other works and gain insight into this field to better apply the diffusion model to image fusion tasks.
arXiv Detail & Related papers (2023-04-10T12:28:27Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
We show that a common latent space emerges from two diffusion models trained independently on related domains.
Applying CycleDiffusion to text-to-image diffusion models, we show that large-scale text-to-image diffusion models can be used as zero-shot image-to-image editors.
arXiv Detail & Related papers (2022-10-11T15:53:52Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z) - Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise [52.59444045853966]
We show that an entire family of generative models can be constructed by varying the choice of image degradation.
The success of fully deterministic models calls into question the community's understanding of diffusion models.
arXiv Detail & Related papers (2022-08-19T15:18:39Z) - Non-Uniform Diffusion Models [0.8602553195689513]
We show that non-uniform diffusion leads to multi-scale diffusion models which have similar structure to this of multi-scale normalizing flows.
We experimentally find that in the same or less training time, the multi-scale diffusion model achieves better FID score than the standard uniform diffusion model.
We also show that non-uniform diffusion leads to a novel estimator for the conditional score function which achieves on par performance with the state-of-the-art conditional denoising estimator.
arXiv Detail & Related papers (2022-07-20T09:59:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.