論文の概要: COPU: Conformal Prediction for Uncertainty Quantification in Natural Language Generation
- arxiv url: http://arxiv.org/abs/2502.12601v1
- Date: Tue, 18 Feb 2025 07:25:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:02:58.276077
- Title: COPU: Conformal Prediction for Uncertainty Quantification in Natural Language Generation
- Title(参考訳): COPU:自然言語生成における不確実性定量化のコンフォーマル予測
- Authors: Sean Wang, Yicheng Jiang, Yuxin Tang, Lu Cheng, Hanjie Chen,
- Abstract要約: 大規模言語モデル(LLM)の性能評価には,自然言語生成のための不確実性定量化(UQ)が不可欠である。
提案手法は,候補出力に基底真理を明示的に付加し,ロジットスコアを用いて非整合性を測定する手法である。
- 参考スコア(独自算出の注目度): 14.461333001997449
- License:
- Abstract: Uncertainty Quantification (UQ) for Natural Language Generation (NLG) is crucial for assessing the performance of Large Language Models (LLMs), as it reveals confidence in predictions, identifies failure modes, and gauges output reliability. Conformal Prediction (CP), a model-agnostic method that generates prediction sets with a specified error rate, has been adopted for UQ in classification tasks, where the size of the prediction set indicates the model's uncertainty. However, when adapting CP to NLG, the sampling-based method for generating candidate outputs cannot guarantee the inclusion of the ground truth, limiting its applicability across a wide range of error rates. To address this, we propose \ourmethod, a method that explicitly adds the ground truth to the candidate outputs and uses logit scores to measure nonconformity. Our experiments with six LLMs on four NLG tasks show that \ourmethod outperforms baseline methods in calibrating error rates and empirical cover rates, offering accurate UQ across a wide range of user-specified error rates.
- Abstract(参考訳): 自然言語生成のための不確実性定量化(UQ)は、予測の信頼性を明らかにし、故障モードを特定し、出力信頼性を評価するため、Large Language Models(LLM)の性能を評価するために不可欠である。
特定の誤差率で予測セットを生成するモデルに依存しないモデル予測(CP)が,モデルの不確実性を示すような分類タスクにおいてUQに採用されている。
しかし, CP を NLG に適応させる場合, サンプリングベースで候補出力を生成する手法では, 真理の包含を保証できないため, 広い範囲の誤差率で適用性が制限される。
そこで本研究では,候補出力に基底真理を明示的に付加する手法である \ourmethod を提案し,非整合性を測定するためにロジットスコアを用いる。
4つの NLG タスクに対する6つの LLM 実験により,Shaurmethod は誤差率と経験的カバーレートを校正するベースライン法より優れており,ユーザ特定エラーレートの精度の高い UQ を提供する。
関連論文リスト
- Addressing Uncertainty in LLMs to Enhance Reliability in Generative AI [47.64301863399763]
中国レストランプロセスに触発された動的セマンティッククラスタリング手法を提案する。
生成したセマンティッククラスタのエントロピーを計算することにより,あるクエリ上でのLarge Language Model(LLM)の不確実性を定量化する。
本稿では,これらのクラスタの(負の)確率を,コンフォーマル予測フレームワーク内の(非)整合性スコアとして活用することを提案する。
論文 参考訳(メタデータ) (2024-11-04T18:49:46Z) - ConU: Conformal Uncertainty in Large Language Models with Correctness Coverage Guarantees [68.33498595506941]
自己整合性理論に基づく新しい不確実性尺度を導入する。
次に,CPアルゴリズムに正当性に整合した不確かさ条件を組み込むことにより,適合性不確かさの基準を策定する。
実証的な評価は、我々の不確実性測定が過去の最先端手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-06-29T17:33:07Z) - Error-Driven Uncertainty Aware Training [7.702016079410588]
Error-Driven Uncertainty Aware Trainingは、ニューラル分類器が不確実性を正確に推定する能力を高めることを目的としている。
EUATアプローチは、モデルのトレーニングフェーズ中に、トレーニング例が正しく予測されているか、あるいは正しく予測されているかによって、2つの損失関数を選択的に使用することによって機能する。
画像認識領域における多様なニューラルモデルとデータセットを用いてEUATを評価する。
論文 参考訳(メタデータ) (2024-05-02T11:48:14Z) - Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification [116.77055746066375]
大型言語モデル(LLM)は幻覚、すなわちその出力に誤った主張を生じさせることで有名である。
本稿では,トークンレベルの不確実性定量化に基づくファクトチェックと幻覚検出パイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-07T17:44:17Z) - Non-Exchangeable Conformal Language Generation with Nearest Neighbors [12.790082627386482]
非交換性共形核サンプリングは、近接する隣人に基づく生成への共形予測フレームワークの新たな拡張である。
本手法は,任意のモデルに対して,余分なトレーニングを伴わずにポストホックで使用することができ,統計的保証を備えたトークンレベルの校正予測セットを提供する。
論文 参考訳(メタデータ) (2024-02-01T16:04:04Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
大規模言語モデル(LLM)では、不確実性の原因を特定することが、信頼性、信頼性、解釈可能性を改善するための重要なステップである。
本稿では,LLMのための不確実性分解フレームワークについて述べる。
提案手法は,入力に対する一連の明確化を生成し,それらをLLMに入力し,対応する予測をアンサンブルする。
論文 参考訳(メタデータ) (2023-11-15T05:58:35Z) - Conformal Language Modeling [61.94417935386489]
生成言語モデル(LM)の共形予測のための新しい手法を提案する。
標準共形予測は厳密で統計的に保証された予測セットを生成する。
我々は,オープンドメイン質問応答,テキスト要約,ラジオロジーレポート生成において,複数のタスクに対するアプローチの約束を実証する。
論文 参考訳(メタデータ) (2023-06-16T21:55:08Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
本手法では, ノックオフ特徴量, エラーベース特徴重要度統計量, ステップダウン手順を一体化して, エラーベースのノックオフ推定手法を提案する。
提案手法では回帰モデルを指定する必要はなく,理論的保証で特徴選択を処理できる。
論文 参考訳(メタデータ) (2022-03-09T01:55:59Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。