COPU: Conformal Prediction for Uncertainty Quantification in Natural Language Generation
- URL: http://arxiv.org/abs/2502.12601v1
- Date: Tue, 18 Feb 2025 07:25:12 GMT
- Title: COPU: Conformal Prediction for Uncertainty Quantification in Natural Language Generation
- Authors: Sean Wang, Yicheng Jiang, Yuxin Tang, Lu Cheng, Hanjie Chen,
- Abstract summary: Uncertainty Quantification (UQ) for Natural Language Generation (NLG) is crucial for assessing the performance of Large Language Models (LLMs)
We propose ourmethod, a method that explicitly adds the ground truth to the candidate outputs and uses logit scores to measure nonconformity.
- Score: 14.461333001997449
- License:
- Abstract: Uncertainty Quantification (UQ) for Natural Language Generation (NLG) is crucial for assessing the performance of Large Language Models (LLMs), as it reveals confidence in predictions, identifies failure modes, and gauges output reliability. Conformal Prediction (CP), a model-agnostic method that generates prediction sets with a specified error rate, has been adopted for UQ in classification tasks, where the size of the prediction set indicates the model's uncertainty. However, when adapting CP to NLG, the sampling-based method for generating candidate outputs cannot guarantee the inclusion of the ground truth, limiting its applicability across a wide range of error rates. To address this, we propose \ourmethod, a method that explicitly adds the ground truth to the candidate outputs and uses logit scores to measure nonconformity. Our experiments with six LLMs on four NLG tasks show that \ourmethod outperforms baseline methods in calibrating error rates and empirical cover rates, offering accurate UQ across a wide range of user-specified error rates.
Related papers
- Assessing Correctness in LLM-Based Code Generation via Uncertainty Estimation [0.0]
We explore uncertainty estimation as a proxy for correctness in LLM-generated code.
We adapt two state-of-the-art techniques from natural language generation.
We develop an abstention policy that prevents the model from making predictions when uncertainty is high.
arXiv Detail & Related papers (2025-02-17T10:03:01Z) - Addressing Uncertainty in LLMs to Enhance Reliability in Generative AI [47.64301863399763]
We present a dynamic semantic clustering approach inspired by the Chinese Restaurant Process.
We quantify uncertainty of Large Language Models (LLMs) on a given query by calculating entropy of the generated semantic clusters.
We propose leveraging the (negative) likelihood of these clusters as the (non)conformity score within Conformal Prediction framework.
arXiv Detail & Related papers (2024-11-04T18:49:46Z) - Generative Conformal Prediction with Vectorized Non-Conformity Scores [6.059745771017814]
Conformal prediction provides model-agnostic uncertainty quantification with guaranteed coverage.
We propose a generative conformal prediction framework with vectorized non-conformity scores.
We construct adaptive uncertainty sets using density-ranked uncertainty balls.
arXiv Detail & Related papers (2024-10-17T16:37:03Z) - ConU: Conformal Uncertainty in Large Language Models with Correctness Coverage Guarantees [68.33498595506941]
We introduce a novel uncertainty measure based on self-consistency theory.
We then develop a conformal uncertainty criterion by integrating the uncertainty condition aligned with correctness into the CP algorithm.
Empirical evaluations indicate that our uncertainty measure outperforms prior state-of-the-art methods.
arXiv Detail & Related papers (2024-06-29T17:33:07Z) - Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification [116.77055746066375]
Large language models (LLMs) are notorious for hallucinating, i.e., producing erroneous claims in their output.
We propose a novel fact-checking and hallucination detection pipeline based on token-level uncertainty quantification.
arXiv Detail & Related papers (2024-03-07T17:44:17Z) - Non-Exchangeable Conformal Language Generation with Nearest Neighbors [12.790082627386482]
Non-exchangeable conformal nucleus sampling is a novel extension of the conformal prediction framework to generation based on nearest neighbors.
Our method can be used post-hoc for an arbitrary model without extra training and supplies token-level, calibrated prediction sets equipped with statistical guarantees.
arXiv Detail & Related papers (2024-02-01T16:04:04Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Conformal Language Modeling [61.94417935386489]
We propose a novel approach to conformal prediction for generative language models (LMs)
Standard conformal prediction produces prediction sets with rigorous, statistical guarantees.
We demonstrate the promise of our approach on multiple tasks in open-domain question answering, text summarization, and radiology report generation.
arXiv Detail & Related papers (2023-06-16T21:55:08Z) - Error-based Knockoffs Inference for Controlled Feature Selection [49.99321384855201]
We propose an error-based knockoff inference method by integrating the knockoff features, the error-based feature importance statistics, and the stepdown procedure together.
The proposed inference procedure does not require specifying a regression model and can handle feature selection with theoretical guarantees.
arXiv Detail & Related papers (2022-03-09T01:55:59Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.