論文の概要: Implicit Repair with Reinforcement Learning in Emergent Communication
- arxiv url: http://arxiv.org/abs/2502.12624v2
- Date: Mon, 24 Feb 2025 17:23:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:52:14.191312
- Title: Implicit Repair with Reinforcement Learning in Emergent Communication
- Title(参考訳): 創発的コミュニケーションにおける強化学習による暗黙の修復
- Authors: Fábio Vital, Alberto Sardinha, Francisco S. Melo,
- Abstract要約: 我々は、通信チャネルにノイズを加え、エージェントが受信した入力を追加することで、Lewis Gameと呼ばれるシグナリングゲームを拡張することに重点を置いている。
分析の結果,エージェントが送信メッセージに冗長性を加えることで,タスク成功に対するノイズの負の影響を防止できることがわかった。
- 参考スコア(独自算出の注目度): 3.8779763612314633
- License:
- Abstract: Conversational repair is a mechanism used to detect and resolve miscommunication and misinformation problems when two or more agents interact. One particular and underexplored form of repair in emergent communication is the implicit repair mechanism, where the interlocutor purposely conveys the desired information in such a way as to prevent misinformation from any other interlocutor. This work explores how redundancy can modify the emergent communication protocol to continue conveying the necessary information to complete the underlying task, even with additional external environmental pressures such as noise. We focus on extending the signaling game, called the Lewis Game, by adding noise in the communication channel and inputs received by the agents. Our analysis shows that agents add redundancy to the transmitted messages as an outcome to prevent the negative impact of noise on the task success. Additionally, we observe that the emerging communication protocol's generalization capabilities remain equivalent to architectures employed in simpler games that are entirely deterministic. Additionally, our method is the only one suitable for producing robust communication protocols that can handle cases with and without noise while maintaining increased generalization performance levels.
- Abstract(参考訳): 会話修復(英: Conversational repair)とは、2つ以上のエージェントが相互作用する際の誤報や誤報を検知し、解決するメカニズムである。
創発的コミュニケーションにおける特定の未発見の修復の1つの形態は、暗黙的な修復機構であり、インターロケータは他のインターロケータからの誤報を防ぐために、目的的に所望の情報を伝達する。
本研究は,ノイズなどの外部環境圧力を伴っても,緊急通信プロトコルを改良して,タスクの完了に必要な情報伝達を継続する方法について検討する。
我々は、通信チャネルにノイズを加え、エージェントが受信した入力を追加することで、Lewis Gameと呼ばれるシグナリングゲームを拡張することに重点を置いている。
分析の結果,エージェントが送信メッセージに冗長性を加えることで,タスク成功に対するノイズの負の影響を防止できることがわかった。
さらに,新たな通信プロトコルの一般化能力は,完全決定論的な単純なゲームで使用されるアーキテクチャと同等であることを示す。
また,本手法は,高次化性能を維持しつつ,ノイズのないケースを処理できるロバスト通信プロトコルの製作に適した方法である。
関連論文リスト
- Secure Semantic Communication via Paired Adversarial Residual Networks [59.468221305630784]
本稿では,セキュリティを意識したセマンティック通信システムに対する敵攻撃の正の側面について検討する。
セマンティックトランスミッターの後に、セマンティックレシーバーの前に、一対のプラグイン可能なモジュールがインストールされる。
提案手法は,高品質なセマンティック通信を維持しつつ,盗聴者を騙すことができる。
論文 参考訳(メタデータ) (2024-07-02T08:32:20Z) - Emergent Quantized Communication [34.31732248872158]
本稿では,メッセージの量子化という,離散的なコミュニケーションを実現するための代替手法を提案する。
メッセージの量子化により、モデルのエンドツーエンドのトレーニングが可能になり、複数のセットアップで優れたパフォーマンスを実現します。
論文 参考訳(メタデータ) (2022-11-04T12:39:45Z) - Over-communicate no more: Situated RL agents learn concise communication
protocols [78.28898217947467]
互いに効果的に効率的にコミュニケーションできる人工エージェントをいかに設計するかは、不明である。
強化学習(RL)を用いたコミュニケーションの出現に関する研究
エージェントがコミュニケーションを行うための環境行為を強制しなければならない多段階タスクにおける位置的コミュニケーションについて検討する。
テストされたすべてのプレッシャーは過剰なコミュニケーションを阻害する可能性があるが、位置通信は最も効果的であり、努力のコストとは異なり、発生に悪影響を及ぼさない。
論文 参考訳(メタデータ) (2022-11-02T21:08:14Z) - Certifiably Robust Policy Learning against Adversarial Communication in
Multi-agent Systems [51.6210785955659]
多くのマルチエージェント強化学習(MARL)では,エージェントが情報を共有し,適切な判断を下す上でコミュニケーションが重要である。
しかし、ノイズや潜在的な攻撃者が存在する現実世界のアプリケーションに訓練された通信エージェントを配置すると、通信ベースのポリシーの安全性は過小評価されている深刻な問題となる。
本研究では,攻撃者が任意の$CfracN-12$エージェントから被害者エージェントへの通信を任意に変更できる,$N$エージェントを備えた環境を検討する。
論文 参考訳(メタデータ) (2022-06-21T07:32:18Z) - The Enforcers: Consistent Sparse-Discrete Methods for Constraining
Informative Emergent Communication [5.432350993419402]
コミュニケーションは、エージェントが目標を達成するために協力することを可能にする。
疎間コミュニケーションの学習における最近の研究は、特に協調作業において、コミュニケーションの減少のコストが報酬の減少につながるような、高分散トレーニングに悩まされている。
本研究は、コミュニケーションの減少による報酬の損失を抑え、差別に対するペナルティを排除し、上記の課題に対処する。
論文 参考訳(メタデータ) (2022-01-19T07:31:06Z) - Interpretation of Emergent Communication in Heterogeneous Collaborative
Embodied Agents [83.52684405389445]
本稿では,コラボレーティブな多目的ナビゲーションタスクCoMONを紹介する。
この課題において、オラクルエージェントは、地図の形式で詳細な環境情報を有する。
視覚的に環境を知覚するナビゲーターエージェントと通信し、目標のシーケンスを見つけるのが任務である。
創発的コミュニケーションはエージェントの観察と3次元環境の空間構造に基礎を置くことができることを示す。
論文 参考訳(メタデータ) (2021-10-12T06:56:11Z) - Effective Communications: A Joint Learning and Communication Framework
for Multi-Agent Reinforcement Learning over Noisy Channels [0.0]
コミュニケーションにおける「有効性問題」の新しい定式化を提案する。
コーディネーションと協調性を向上するために,複数のエージェントがノイズの多いチャネル上で通信することを検討する。
提案した枠組みを用いて学習した共同方針が,コミュニケーションが別々に考慮される場合よりも優れていることを例に示します。
論文 参考訳(メタデータ) (2021-01-02T10:43:41Z) - Learning to Communicate and Correct Pose Errors [75.03747122616605]
本稿では、V2VNetで提案された設定について検討し、近くにある自動運転車が共同で物体検出と動き予測を協調的に行う方法を提案する。
本稿では,コミュニケーションを学習し,潜在的な誤りを推定し,それらの誤りについてコンセンサスを得るための新しいニューラルネットワーク推論フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-10T18:19:40Z) - Exploring Zero-Shot Emergent Communication in Embodied Multi-Agent
Populations [59.608216900601384]
本研究では,3次元環境下で関節を作動させることでコミュニケーションを学ぶエージェントについて検討する。
現実的な仮定、意図の非一様分布、共通知識エネルギーコストにおいて、これらのエージェントは新規パートナーに一般化するプロトコルを見つけることができることを示す。
論文 参考訳(メタデータ) (2020-10-29T19:23:10Z) - Learning to Communicate Using Counterfactual Reasoning [2.8110705488739676]
本稿では,Multi-agent counterfactual communication learning (MACC)法を提案する。
MACCは、通信エージェントの信用割当問題を克服するために、対実的推論に適応する。
実験の結果,MACCは粒子環境における4つのシナリオにおいて,最先端のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-06-12T14:02:04Z) - Learning Individually Inferred Communication for Multi-Agent Cooperation [37.56115000150748]
我々はエージェントエージェントがエージェントエージェントコミュニケーションの事前学習を可能にするために、個別推論通信(I2C)を提案する。
先行知識は因果推論によって学習され、フィードフォワードニューラルネットワークによって実現される。
I2Cは通信オーバーヘッドを減らすだけでなく、様々なマルチエージェント協調シナリオのパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-06-11T14:07:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。