論文の概要: NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generation
- arxiv url: http://arxiv.org/abs/2502.12638v1
- Date: Tue, 18 Feb 2025 08:40:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:05:25.275966
- Title: NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generation
- Title(参考訳): NExT-Mol:3次元分子生成のための1次元言語モデリングと3次元拡散
- Authors: Zhiyuan Liu, Yanchen Luo, Han Huang, Enzhi Zhang, Sihang Li, Junfeng Fang, Yaorui Shi, Xiang Wang, Kenji Kawaguchi, Tat-Seng Chua,
- Abstract要約: NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generationを提案する。
NExT-Molは1D分子生成のために広範囲に事前訓練された分子LMを使用し、その後、生成された分子の3Dコンホメータを予測する。
我々は,NExT-Molの性能を向上させるために,LMのモデルサイズをスケールアップし,拡散ニューラルアーキテクチャを改良し,三次元トランスファー学習に1Dを適用した。
- 参考スコア(独自算出の注目度): 72.22099363325145
- License:
- Abstract: 3D molecule generation is crucial for drug discovery and material design. While prior efforts focus on 3D diffusion models for their benefits in modeling continuous 3D conformers, they overlook the advantages of 1D SELFIES-based Language Models (LMs), which can generate 100% valid molecules and leverage the billion-scale 1D molecule datasets. To combine these advantages for 3D molecule generation, we propose a foundation model -- NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generation. NExT-Mol uses an extensively pretrained molecule LM for 1D molecule generation, and subsequently predicts the generated molecule's 3D conformers with a 3D diffusion model. We enhance NExT-Mol's performance by scaling up the LM's model size, refining the diffusion neural architecture, and applying 1D to 3D transfer learning. Notably, our 1D molecule LM significantly outperforms baselines in distributional similarity while ensuring validity, and our 3D diffusion model achieves leading performances in conformer prediction. Given these improvements in 1D and 3D modeling, NExT-Mol achieves a 26% relative improvement in 3D FCD for de novo 3D generation on GEOM-DRUGS, and a 13% average relative gain for conditional 3D generation on QM9-2014. Our codes and pretrained checkpoints are available at https://github.com/acharkq/NExT-Mol.
- Abstract(参考訳): 3次元分子生成は、医薬品の発見と材料設計に不可欠である。
従来の取り組みでは、連続3Dコンバータのモデリングにおける利点のために、3D拡散モデルに重点を置いていたが、1D SELFIESベースの言語モデル(Language Models, 1D SELFIES-based Language Models, LMs)の利点を見落とし、100%有効な分子を生成し、数十億のスケールの1D分子データセットを活用することができる。
3次元分子生成におけるこれらの利点を組み合わせるために, 基礎モデルとして NExT-Mol: 3D Diffusion Meets 1D Language Modeling for 3D Molecule Generationを提案する。
NExT-Molは1D分子生成のために広く事前訓練された分子LMを使用し、3D拡散モデルで生成された分子の3Dコンホメータを予測する。
我々は,NExT-Molの性能を向上させるために,LMのモデルサイズをスケールアップし,拡散ニューラルアーキテクチャを改良し,三次元トランスファー学習に1Dを適用した。
特に,我々の1次元分子LMは分布類似性において基線を著しく上回り,有効性を保証し,我々の3次元拡散モデルはコンホメータ予測において先行的な性能を達成する。
NExT-Molは1Dモデルと3Dモデルの改善を考慮し,GEOM-DRUGSでは3D FCDが26%向上し,QM9-2014では条件付き3D生成が13%向上した。
私たちのコードと事前訓練されたチェックポイントはhttps://github.com/acharkq/NExT-Mol.orgで公開されています。
関連論文リスト
- 3D-MolT5: Towards Unified 3D Molecule-Text Modeling with 3D Molecular Tokenization [41.07090635630771]
3D-MolT5は1次元分子配列と3次元分子構造の両方をモデル化する統合されたフレームワークである。
鍵となる革新は、細粒度の3次元部分構造表現を特別な3次元トークン語彙にマッピングする方法論にある。
提案した3D-MolT5は,分子特性予測,分子キャプション,テキストベースの分子生成タスクにおいて,既存の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-09T14:20:55Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
テキストプロンプトから高品質な3Dアセットを作成するための拡散型3D生成モデルであるDIRECT-3Dを提案する。
我々のモデルは、広範に騒々しく不整合な3D資産で直接訓練されている。
単一クラス生成とテキスト・ツー・3D生成の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T17:58:15Z) - VFusion3D: Learning Scalable 3D Generative Models from Video Diffusion Models [20.084928490309313]
本稿では,事前学習ビデオ拡散モデルを用いたスケーラブルな3次元生成モデル構築手法を提案する。
微調整により多視点生成能力を解放することにより、大規模な合成多視点データセットを生成し、フィードフォワード3D生成モデルを訓練する。
提案したモデルであるVFusion3Dは、ほぼ3Mの合成マルチビューデータに基づいて訓練され、単一の画像から数秒で3Dアセットを生成することができる。
論文 参考訳(メタデータ) (2024-03-18T17:59:12Z) - LN3Diff: Scalable Latent Neural Fields Diffusion for Speedy 3D Generation [73.36690511083894]
本稿では,LN3Diffと呼ばれる新しいフレームワークを導入し,統一された3次元拡散パイプラインに対処する。
提案手法では,3次元アーキテクチャと変分オートエンコーダを用いて,入力画像を構造化されたコンパクトな3次元潜在空間に符号化する。
3次元生成のためのShapeNetの最先端性能を実現し,モノクロ3次元再構成と条件付き3次元生成において優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-18T17:54:34Z) - 3DTopia: Large Text-to-3D Generation Model with Hybrid Diffusion Priors [85.11117452560882]
本稿では,2段階のテキスト・ツー・3D生成システムである3DTopiaについて述べる。
3次元データから直接学習される3次元拡散の第1段階のサンプルは、テキスト条件付き3次元潜伏拡散モデルを用いており、高速なプロトタイピングのための粗い3次元サンプルを迅速に生成する。
第2段階は2次元拡散前処理を利用して、粗い3次元モデルのテクスチャを第1段階からさらに洗練し、高品質なテクスチャ生成のための潜時空間と画素空間の最適化からなる。
論文 参考訳(メタデータ) (2024-03-04T17:26:28Z) - GaussianDreamer: Fast Generation from Text to 3D Gaussians by Bridging 2D and 3D Diffusion Models [102.22388340738536]
2Dおよび3D拡散モデルは、プロンプトに基づいて適切な3Dオブジェクトを生成することができる。
3次元拡散モデルには優れた3次元整合性があるが、トレーニング可能な3次元データは高価で入手が難しいため、その品質と一般化は制限されている。
本稿では,2種類の拡散モデルから近年の明示的かつ効率的な3次元ガウススプラッティング表現を通じて電力を橋渡ししようとする。
論文 参考訳(メタデータ) (2023-10-12T17:22:24Z) - Sin3DM: Learning a Diffusion Model from a Single 3D Textured Shape [46.31314488932164]
Sin3DMは1つの3次元テクスチャ形状から内部パッチ分布を学習する拡散モデルである。
提案手法は, 3次元形状の生成品質において, 従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-24T17:57:15Z) - Geometric Latent Diffusion Models for 3D Molecule Generation [172.15028281732737]
生成モデル、特に拡散モデル(DM)は、特徴豊富な測地を生成する上で有望な結果を得た。
我々はGeoLDM(Geometric Latent Diffusion Models)と呼ばれる新しい3次元分子生成法を提案する。
論文 参考訳(メタデータ) (2023-05-02T01:07:22Z) - Geometry-Complete Diffusion for 3D Molecule Generation and Optimization [3.8366697175402225]
3次元分子生成のための幾何-完全拡散モデル(GCDM)を導入する。
GCDMは、既存の3次元分子拡散モデルよりも条件および非条件設定間で大きなマージンで優れている。
また、GCDMの幾何学的特徴は、既存の3次元分子の幾何学的および化学組成を一貫して最適化するために再利用可能であることも示している。
論文 参考訳(メタデータ) (2023-02-08T20:01:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。