Uncertainty Propagation for Echocardiography Clinical Metric Estimation via Contour Sampling
- URL: http://arxiv.org/abs/2502.12713v1
- Date: Tue, 18 Feb 2025 10:26:16 GMT
- Title: Uncertainty Propagation for Echocardiography Clinical Metric Estimation via Contour Sampling
- Authors: Thierry Judge, Olivier Bernard, Woo-Jin Cho Kim, Alberto Gomez, Arian Beqiri, Agisilaos Chartsias, Pierre-Marc Jodoin,
- Abstract summary: We propose a novel uncertainty estimation method based on contouring rather than segmentation.<n>Our proposed method not only provides accurate uncertainty estimations for the task of contouring but also for the downstream clinical metrics on two cardiac ultrasound datasets.
- Score: 4.708437939150225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Echocardiography plays a fundamental role in the extraction of important clinical parameters (e.g. left ventricular volume and ejection fraction) required to determine the presence and severity of heart-related conditions. When deploying automated techniques for computing these parameters, uncertainty estimation is crucial for assessing their utility. Since clinical parameters are usually derived from segmentation maps, there is no clear path for converting pixel-wise uncertainty values into uncertainty estimates in the downstream clinical metric calculation. In this work, we propose a novel uncertainty estimation method based on contouring rather than segmentation. Our method explicitly predicts contour location uncertainty from which contour samples can be drawn. Finally, the sampled contours can be used to propagate uncertainty to clinical metrics. Our proposed method not only provides accurate uncertainty estimations for the task of contouring but also for the downstream clinical metrics on two cardiac ultrasound datasets. Code is available at: https://github.com/ThierryJudge/contouring-uncertainty.
Related papers
- Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement [61.573750959726475]
We consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks that may be supported via semantic segmentation models.<n>We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans.
arXiv Detail & Related papers (2025-07-22T13:24:45Z) - Conformal Risk Control for Semantic Uncertainty Quantification in Computed Tomography [8.992691662614206]
We present a conformal risk control (CRC) procedure for organ-dependent uncertainty estimation.
We make this procedure semantically adaptive to each patient's anatomy and positioning of organs.
Our method, sem-CRC, provides tighter uncertainty intervals with valid coverage on real-world computed tomography (CT) data.
arXiv Detail & Related papers (2025-02-28T19:27:07Z) - Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner [72.20769640318969]
Estimating causal quantities from observational data is crucial for understanding the safety and effectiveness of medical treatments.<n>Medical practitioners require not only estimating averaged causal quantities, but also understanding the randomness of the treatment effect as a random variable.<n>This randomness is referred to as aleatoric uncertainty and is necessary for understanding the probability of benefit from treatment or quantiles of the treatment effect.
arXiv Detail & Related papers (2024-11-05T18:14:49Z) - Improving Uncertainty-Error Correspondence in Deep Bayesian Medical Image Segmentation [3.3572047447192626]
We train the FlipOut model with the Accuracy-vs-Uncertainty (AvU) loss which promotes uncertainty to be present only in inaccurate regions.
We apply this method on datasets of two radiotherapy body sites, c.f. head-and-neck CT and prostate MR scans.
arXiv Detail & Related papers (2024-09-05T12:31:51Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
Left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions.
Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images.
This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction.
arXiv Detail & Related papers (2023-10-30T13:44:55Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Information-Theoretic Safe Exploration with Gaussian Processes [89.31922008981735]
We consider a sequential decision making task where we are not allowed to evaluate parameters that violate an unknown (safety) constraint.
Most current methods rely on a discretization of the domain and cannot be directly extended to the continuous case.
We propose an information-theoretic safe exploration criterion that directly exploits the GP posterior to identify the most informative safe parameters to evaluate.
arXiv Detail & Related papers (2022-12-09T15:23:58Z) - CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation [6.197149831796131]
We propose CRISP a ContRastive Image for uncertainty Prediction method.
At its core, CRISP implements a contrastive method to learn a joint latent space which encodes a distribution of valid segmentations.
We use this joint latent space to compare predictions to thousands of latent vectors and provide anatomically consistent uncertainty maps.
arXiv Detail & Related papers (2022-06-15T16:56:58Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Localization Uncertainty Estimation for Anchor-Free Object Detection [48.931731695431374]
There are several limitations of the existing uncertainty estimation methods for anchor-based object detection.
We propose a new localization uncertainty estimation method called UAD for anchor-free object detection.
Our method captures the uncertainty in four directions of box offsets that are homogeneous, so that it can tell which direction is uncertain.
arXiv Detail & Related papers (2020-06-28T13:49:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.