Mind the Gap: Aligning the Brain with Language Models Requires a Nonlinear and Multimodal Approach
- URL: http://arxiv.org/abs/2502.12771v1
- Date: Tue, 18 Feb 2025 11:33:28 GMT
- Title: Mind the Gap: Aligning the Brain with Language Models Requires a Nonlinear and Multimodal Approach
- Authors: Danny Dongyeop Han, Yunju Cho, Jiook Cha, Jay-Yoon Lee,
- Abstract summary: Self-supervised language and audio models effectively predict brain responses to speech.<n>Traditional prediction models rely on linear mappings from unimodal features.<n>Here, we introduce a nonlinear, multimodal prediction model that combines audio and linguistic features from pre-trained models.
- Score: 4.1606197342190105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-supervised language and audio models effectively predict brain responses to speech. However, traditional prediction models rely on linear mappings from unimodal features, despite the complex integration of auditory signals with linguistic and semantic information across widespread brain networks during speech comprehension. Here, we introduce a nonlinear, multimodal prediction model that combines audio and linguistic features from pre-trained models (e.g., LLAMA, Whisper). Our approach achieves a 17.2% and 17.9% improvement in prediction performance (unnormalized and normalized correlation) over traditional unimodal linear models, as well as a 7.7% and 14.4% improvement, respectively, over prior state-of-the-art models. These improvements represent a major step towards future robust in-silico testing and improved decoding performance. They also reveal how auditory and semantic information are fused in motor, somatosensory, and higher-level semantic regions, aligning with existing neurolinguistic theories. Overall, our work highlights the often neglected potential of nonlinear and multimodal approaches to brain modeling, paving the way for future studies to embrace these strategies in naturalistic neurolinguistics research.
Related papers
- Probing Multimodal Fusion in the Brain: The Dominance of Audiovisual Streams in Naturalistic Encoding [1.2233362977312945]
We develop brain encoding models using state-of-the-art visual (X-CLIP) and auditory (Whisper) feature extractors.<n>We rigorously evaluate them on both in-distribution (ID) and diverse out-of-distribution (OOD) data.
arXiv Detail & Related papers (2025-07-25T08:12:26Z) - Developmental Predictive Coding Model for Early Infancy Mono and Bilingual Vocal Continual Learning [69.8008228833895]
We propose a small-sized generative neural network equipped with a continual learning mechanism.<n>Our model prioritizes interpretability and demonstrates the advantages of online learning.
arXiv Detail & Related papers (2024-12-23T10:23:47Z) - Modelling Multimodal Integration in Human Concept Processing with Vision-Language Models [7.511284868070148]
We investigate whether integration of visuo-linguistic information leads to representations that are more aligned with human brain activity.
Our findings indicate an advantage of multimodal models in predicting human brain activations.
arXiv Detail & Related papers (2024-07-25T10:08:37Z) - Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network [16.317199232071232]
Large Language Models (LLMs) have been shown to be effective models of the human language system.
In this work, we investigate the key architectural components driving the surprising alignment of untrained models.
arXiv Detail & Related papers (2024-06-21T12:54:03Z) - Navigating Brain Language Representations: A Comparative Analysis of Neural Language Models and Psychologically Plausible Models [29.50162863143141]
We compare encoding performance of various neural language models and psychologically plausible models.
Surprisingly, our findings revealed that psychologically plausible models outperformed neural language models across diverse contexts.
arXiv Detail & Related papers (2024-04-30T08:48:07Z) - Meta predictive learning model of languages in neural circuits [2.5690340428649328]
We propose a mean-field learning model within the predictive coding framework.
Our model reveals that most of the connections become deterministic after learning.
Our model provides a starting point to investigate the connection among brain computation, next-token prediction and general intelligence.
arXiv Detail & Related papers (2023-09-08T03:58:05Z) - Scaling laws for language encoding models in fMRI [47.498241053872924]
We tested whether larger open-source models are better at predicting brain responses recorded using fMRI.
Similar logarithmic behavior was observed when scaling the size of the fMRI training set.
These results suggest that increasing scale in both models and data will yield incredibly effective models of language processing in the brain.
arXiv Detail & Related papers (2023-05-19T17:53:03Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
We examine the impact of test loss, training corpus and model architecture on the prediction of functional Magnetic Resonance Imaging timecourses of participants listening to an audiobook.
We find that untrained versions of each model already explain significant amount of signal in the brain by capturing similarity in brain responses across identical words.
We suggest good practices for future studies aiming at explaining the human language system using neural language models.
arXiv Detail & Related papers (2022-07-07T15:37:17Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
We capitalize on the progress of self-supervised speech representation learning to create new state-of-the-art models of the human auditory system.
We show that these results show that self-supervised models effectively capture the hierarchy of information relevant to different stages of speech processing in human cortex.
arXiv Detail & Related papers (2022-05-27T22:04:02Z) - Dependency-based Mixture Language Models [53.152011258252315]
We introduce the Dependency-based Mixture Language Models.
In detail, we first train neural language models with a novel dependency modeling objective.
We then formulate the next-token probability by mixing the previous dependency modeling probability distributions with self-attention.
arXiv Detail & Related papers (2022-03-19T06:28:30Z) - Connecting Neural Response measurements & Computational Models of
language: a non-comprehensive guide [5.523143941738335]
Recent advances in language modelling and in neuroimaging promise potential improvements in the investigation of language's neurobiology.
This survey traces a line from early research linking Event Related Potentials and complexity measures derived from simple language models to contemporary studies employing Artificial Neural Network models trained on large corpora.
arXiv Detail & Related papers (2022-03-10T11:24:54Z) - Model-based analysis of brain activity reveals the hierarchy of language
in 305 subjects [82.81964713263483]
A popular approach to decompose the neural bases of language consists in correlating, across individuals, the brain responses to different stimuli.
Here, we show that a model-based approach can reach equivalent results within subjects exposed to natural stimuli.
arXiv Detail & Related papers (2021-10-12T15:30:21Z) - Factorized Neural Transducer for Efficient Language Model Adaptation [51.81097243306204]
We propose a novel model, factorized neural Transducer, by factorizing the blank and vocabulary prediction.
It is expected that this factorization can transfer the improvement of the standalone language model to the Transducer for speech recognition.
We demonstrate that the proposed factorized neural Transducer yields 15% to 20% WER improvements when out-of-domain text data is used for language model adaptation.
arXiv Detail & Related papers (2021-09-27T15:04:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.