Composition and Control with Distilled Energy Diffusion Models and Sequential Monte Carlo
- URL: http://arxiv.org/abs/2502.12786v1
- Date: Tue, 18 Feb 2025 11:47:44 GMT
- Title: Composition and Control with Distilled Energy Diffusion Models and Sequential Monte Carlo
- Authors: James Thornton, Louis Bethune, Ruixiang Zhang, Arwen Bradley, Preetum Nakkiran, Shuangfei Zhai,
- Abstract summary: We introduce a novel training regime for the energy function through distillation of pre-trained diffusion models.
We showcase the synergies between energy and score by casting the diffusion sampling procedure as a Feynman Kac model.
- Score: 18.377963220078442
- License:
- Abstract: Diffusion models may be formulated as a time-indexed sequence of energy-based models, where the score corresponds to the negative gradient of an energy function. As opposed to learning the score directly, an energy parameterization is attractive as the energy itself can be used to control generation via Monte Carlo samplers. Architectural constraints and training instability in energy parameterized models have so far yielded inferior performance compared to directly approximating the score or denoiser. We address these deficiencies by introducing a novel training regime for the energy function through distillation of pre-trained diffusion models, resembling a Helmholtz decomposition of the score vector field. We further showcase the synergies between energy and score by casting the diffusion sampling procedure as a Feynman Kac model where sampling is controlled using potentials from the learnt energy functions. The Feynman Kac model formalism enables composition and low temperature sampling through sequential Monte Carlo.
Related papers
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.
Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.
We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - Deep generative modelling of canonical ensemble with differentiable thermal properties [0.9421843976231371]
We propose a variational modelling method with differentiable temperature for canonical ensembles.
Using a deep generative model, the free energy is estimated and minimized simultaneously in a continuous temperature range.
The training process requires no dataset, and works with arbitrary explicit density generative models.
arXiv Detail & Related papers (2024-04-29T03:41:49Z) - Iterated Denoising Energy Matching for Sampling from Boltzmann Densities [109.23137009609519]
Iterated Denoising Energy Matching (iDEM)
iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our matching objective.
We show that the proposed approach achieves state-of-the-art performance on all metrics and trains $2-5times$ faster.
arXiv Detail & Related papers (2024-02-09T01:11:23Z) - Generalized Contrastive Divergence: Joint Training of Energy-Based Model
and Diffusion Model through Inverse Reinforcement Learning [13.22531381403974]
Generalized Contrastive Divergence (GCD) is a novel objective function for training an energy-based model (EBM) and a sampler simultaneously.
We present preliminary yet promising results showing that joint training is beneficial for both EBM and a diffusion model.
arXiv Detail & Related papers (2023-12-06T10:10:21Z) - MCMC-Correction of Score-Based Diffusion Models for Model Composition [2.682859657520006]
Diffusion models can be parameterised in terms of either a score or an energy function.
We propose keeping the score parameterisation and computing an acceptance probability inspired by energy-based models.
arXiv Detail & Related papers (2023-07-26T07:50:41Z) - Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC [102.64648158034568]
diffusion models have quickly become the prevailing approach to generative modeling in many domains.
We propose an energy-based parameterization of diffusion models which enables the use of new compositional operators.
We find these samplers lead to notable improvements in compositional generation across a wide set of problems.
arXiv Detail & Related papers (2023-02-22T18:48:46Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Particle Dynamics for Learning EBMs [83.59335980576637]
Energy-based modeling is a promising approach to unsupervised learning, which yields many downstream applications from a single model.
The main difficulty in learning energy-based models with the "contrastive approaches" is the generation of samples from the current energy function at each iteration.
This paper proposes an alternative approach to getting these samples and avoiding crude MCMC sampling from the current model.
arXiv Detail & Related papers (2021-11-26T23:41:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.