Consistent Sampling and Simulation: Molecular Dynamics with Energy-Based Diffusion Models
- URL: http://arxiv.org/abs/2506.17139v1
- Date: Fri, 20 Jun 2025 16:38:29 GMT
- Title: Consistent Sampling and Simulation: Molecular Dynamics with Energy-Based Diffusion Models
- Authors: Michael Plainer, Hao Wu, Leon Klein, Stephan Günnemann, Frank Noé,
- Abstract summary: We investigate inconsistencies in the samples generated via classical diffusion inference and simulation.<n>We propose an energy-based diffusion model with a Fokker-Planck-derived regularization term enforcing consistency.
- Score: 46.36022553538577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have recently gained significant attention due to their effectiveness in various scientific domains, including biochemistry. When trained on equilibrium molecular distributions, diffusion models provide both: a generative procedure to sample equilibrium conformations and associated forces derived from the model's scores. However, using the forces for coarse-grained molecular dynamics simulations uncovers inconsistencies in the samples generated via classical diffusion inference and simulation, despite both originating from the same model. Particularly at the small diffusion timesteps required for simulations, diffusion models fail to satisfy the Fokker-Planck equation, which governs how the score should evolve over time. We interpret this deviation as an indication of the observed inconsistencies and propose an energy-based diffusion model with a Fokker-Planck-derived regularization term enforcing consistency. We demonstrate the effectiveness of our approach on toy systems, alanine dipeptide, and introduce a state-of-the-art transferable Boltzmann emulator for dipeptides that supports simulation and demonstrates enhanced consistency and efficient sampling.
Related papers
- Iterative Distillation for Reward-Guided Fine-Tuning of Diffusion Models in Biomolecular Design [53.93023688824764]
We address the problem of fine-tuning diffusion models for reward-guided generation in biomolecular design.<n>We propose an iterative distillation-based fine-tuning framework that enables diffusion models to optimize for arbitrary reward functions.<n>Our off-policy formulation, combined with KL divergence minimization, enhances training stability and sample efficiency compared to existing RL-based methods.
arXiv Detail & Related papers (2025-07-01T05:55:28Z) - Progressive Inference-Time Annealing of Diffusion Models for Sampling from Boltzmann Densities [85.83359661628575]
We propose Progressive Inference-Time Annealing (PITA) to learn diffusion-based samplers.<n>PITA combines two complementary techniques: Annealing of the Boltzmann distribution and Diffusion smoothing.<n>It enables equilibrium sampling of N-body particle systems, Alanine Dipeptide, and tripeptides in Cartesian coordinates.
arXiv Detail & Related papers (2025-06-19T17:14:22Z) - Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance [11.562962976129292]
We propose Potential Score Matching (PSM), an approach that utilizes the potential energy gradient to guide generative models.<n>PSM does not require exact energy functions and can debias sample distributions even when trained on limited and biased data.<n>The results demonstrate that molecular distributions generated by PSM more closely approximate the Boltzmann distribution compared to traditional diffusion models.
arXiv Detail & Related papers (2025-03-18T11:27:28Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Hessian-Informed Flow Matching [4.542719108171107]
Hessian-Informed Flow Matching is a novel approach that integrates the Hessian of an energy function into conditional flows.
This integration allows HI-FM to account for local curvature and anisotropic covariance structures.
Empirical evaluations on the MNIST and Lennard-Jones particles datasets demonstrate that HI-FM improves the likelihood of test samples.
arXiv Detail & Related papers (2024-10-15T09:34:52Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Graph Diffusion Transformers for Multi-Conditional Molecular Generation [16.58392955245203]
We present the Graph Diffusion Transformer (Graph DiT) for multi-conditional molecular generation.
Graph DiT integrates an encoder to learn numerical and categorical property representations with the Transformer-based denoiser.
Results demonstrate the superiority of Graph DiT across nine metrics from distribution learning to condition control for molecular properties.
arXiv Detail & Related papers (2024-01-24T23:45:31Z) - Uncertainty-aware Surrogate Models for Airfoil Flow Simulations with Denoising Diffusion Probabilistic Models [26.178192913986344]
We make a first attempt to use denoising diffusion probabilistic models (DDPMs) to train an uncertainty-aware surrogate model for turbulence simulations.
Our results show DDPMs can successfully capture the whole distribution of solutions and, as a consequence, accurately estimate the uncertainty of the simulations.
We also evaluate an emerging generative modeling variant, flow matching, in comparison to regular diffusion models.
arXiv Detail & Related papers (2023-12-08T19:04:17Z) - Renormalizing Diffusion Models [0.7252027234425334]
We use diffusion models to learn inverse renormalization group flows of statistical and quantum field theories.
Our work provides an interpretation of multiscale diffusion models, and gives physically-inspired suggestions for diffusion models which should have novel properties.
arXiv Detail & Related papers (2023-08-23T18:02:31Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.