Commonsense Reasoning in Arab Culture
- URL: http://arxiv.org/abs/2502.12788v1
- Date: Tue, 18 Feb 2025 11:49:54 GMT
- Title: Commonsense Reasoning in Arab Culture
- Authors: Abdelrahman Sadallah, Junior Cedric Tonga, Khalid Almubarak, Saeed Almheiri, Farah Atif, Chatrine Qwaider, Karima Kadaoui, Sara Shatnawi, Yaser Alesh, Fajri Koto,
- Abstract summary: We introduce datasetname, a commonsense reasoning dataset in Modern Standard Arabic (MSA), covering cultures of 13 countries across the Gulf, Levant, North Africa, and the Nile Valley.
The dataset was built from scratch by engaging native speakers to write and validate culturally relevant questions for their respective countries.
datasetname spans 12 daily life domains with 54 fine-grained subtopics, reflecting various aspects of social norms, traditions, and everyday experiences.
- Score: 6.116784716369165
- License:
- Abstract: Despite progress in Arabic large language models, such as Jais and AceGPT, their evaluation on commonsense reasoning has largely relied on machine-translated datasets, which lack cultural depth and may introduce Anglocentric biases. Commonsense reasoning is shaped by geographical and cultural contexts, and existing English datasets fail to capture the diversity of the Arab world. To address this, we introduce \datasetname, a commonsense reasoning dataset in Modern Standard Arabic (MSA), covering cultures of 13 countries across the Gulf, Levant, North Africa, and the Nile Valley. The dataset was built from scratch by engaging native speakers to write and validate culturally relevant questions for their respective countries. \datasetname spans 12 daily life domains with 54 fine-grained subtopics, reflecting various aspects of social norms, traditions, and everyday experiences. Zero-shot evaluations show that open-weight language models with up to 32B parameters struggle to comprehend diverse Arab cultures, with performance varying across regions. These findings highlight the need for more culturally aware models and datasets tailored to the Arabic-speaking world.
Related papers
- AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs [22.121471902726892]
We present AraDiCE, a benchmark for Arabic Dialect and Cultural Evaluation.
First-ever fine-grained benchmark designed to evaluate cultural awareness across the Gulf, Egypt, and Levant regions.
arXiv Detail & Related papers (2024-09-17T17:59:25Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
This paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection.
It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs.
We evaluate these models across three downstream tasks: content moderation, cultural alignment, and cultural education.
arXiv Detail & Related papers (2024-05-24T01:49:02Z) - 101 Billion Arabic Words Dataset [0.0]
This study aims to address the data scarcity in the Arab world and to encourage the development of Arabic Language Models.
We undertook a large-scale data mining project, extracting a substantial volume of text from the Common Crawl WET files.
The extracted data underwent a rigorous cleaning and deduplication process, using innovative techniques to ensure the integrity and uniqueness of the dataset.
arXiv Detail & Related papers (2024-04-29T13:15:03Z) - D3CODE: Disentangling Disagreements in Data across Cultures on Offensiveness Detection and Evaluation [5.9053106775634685]
We introduce the dataset: a large-scale cross-cultural dataset of parallel annotations for offensive language in over 4.5K sentences annotated by a pool of over 4k annotators.
The dataset contains annotators' moral values captured along six moral foundations: care, equality, proportionality, authority, loyalty, and purity.
Our analyses reveal substantial regional variations in annotators' perceptions that are shaped by individual moral values.
arXiv Detail & Related papers (2024-04-16T19:12:03Z) - CULTURE-GEN: Revealing Global Cultural Perception in Language Models through Natural Language Prompting [73.94059188347582]
We uncover culture perceptions of three SOTA models on 110 countries and regions on 8 culture-related topics through culture-conditioned generations.
We discover that culture-conditioned generation consist of linguistic "markers" that distinguish marginalized cultures apart from default cultures.
arXiv Detail & Related papers (2024-04-16T00:50:43Z) - ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic [51.922112625469836]
We present datasetname, the first multi-task language understanding benchmark for the Arabic language.
Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA) and is carefully constructed by collaborating with native speakers in the region.
Our evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models.
arXiv Detail & Related papers (2024-02-20T09:07:41Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
This paper introduces a novel approach for massively multicultural knowledge acquisition.
Our method strategically navigates from densely informative Wikipedia documents on cultural topics to an extensive network of linked pages.
Our work marks an important step towards deeper understanding and bridging the gaps of cultural disparities in AI.
arXiv Detail & Related papers (2024-02-14T18:16:54Z) - CIDAR: Culturally Relevant Instruction Dataset For Arabic [5.179940415076765]
This paper introduces CIDAR, the first open Arabic instruction-tuning dataset culturally-aligned by human reviewers.
CIDAR contains 10,000 instruction and output pairs that represent the Arab region.
arXiv Detail & Related papers (2024-02-05T16:44:17Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
This paper identifies a cultural dominance issue within large language models (LLMs)
LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages.
arXiv Detail & Related papers (2023-10-19T05:38:23Z) - AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
The paper proposes a comprehensive solution that includes pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic.
The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities.
arXiv Detail & Related papers (2023-09-21T13:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.