AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs
- URL: http://arxiv.org/abs/2409.11404v3
- Date: Tue, 17 Dec 2024 21:15:26 GMT
- Title: AraDiCE: Benchmarks for Dialectal and Cultural Capabilities in LLMs
- Authors: Basel Mousi, Nadir Durrani, Fatema Ahmad, Md. Arid Hasan, Maram Hasanain, Tameem Kabbani, Fahim Dalvi, Shammur Absar Chowdhury, Firoj Alam,
- Abstract summary: We present AraDiCE, a benchmark for Arabic Dialect and Cultural Evaluation.
First-ever fine-grained benchmark designed to evaluate cultural awareness across the Gulf, Egypt, and Levant regions.
- Score: 22.121471902726892
- License:
- Abstract: Arabic, with its rich diversity of dialects, remains significantly underrepresented in Large Language Models, particularly in dialectal variations. We address this gap by introducing seven synthetic datasets in dialects alongside Modern Standard Arabic (MSA), created using Machine Translation (MT) combined with human post-editing. We present AraDiCE, a benchmark for Arabic Dialect and Cultural Evaluation. We evaluate LLMs on dialect comprehension and generation, focusing specifically on low-resource Arabic dialects. Additionally, we introduce the first-ever fine-grained benchmark designed to evaluate cultural awareness across the Gulf, Egypt, and Levant regions, providing a novel dimension to LLM evaluation. Our findings demonstrate that while Arabic-specific models like Jais and AceGPT outperform multilingual models on dialectal tasks, significant challenges persist in dialect identification, generation, and translation. This work contributes $\approx$45K post-edited samples, a cultural benchmark, and highlights the importance of tailored training to improve LLM performance in capturing the nuances of diverse Arabic dialects and cultural contexts. We have released the dialectal translation models and benchmarks developed in this study (https://huggingface.co/datasets/QCRI/AraDiCE).
Related papers
- On The Origin of Cultural Biases in Language Models: From Pre-training Data to Linguistic Phenomena [10.263201685476492]
This paper aims to uncover the origins of entity-related cultural biases in Language Models (LMs)
We introduce CAMeL-2, a parallel Arabic-English benchmark of 58,086 entities associated with Arab and Western cultures and 367 masked natural contexts for entities.
Our evaluations using CAMeL-2 reveal reduced performance gaps between cultures by LMs when tested in English compared to Arabic.
arXiv Detail & Related papers (2025-01-08T18:15:47Z) - Second Language (Arabic) Acquisition of LLMs via Progressive Vocabulary Expansion [55.27025066199226]
This paper addresses the need for democratizing large language models (LLM) in the Arab world.
One practical objective for an Arabic LLM is to utilize an Arabic-specific vocabulary for the tokenizer that could speed up decoding.
Inspired by the vocabulary learning during Second Language (Arabic) Acquisition for humans, the released AraLLaMA employs progressive vocabulary expansion.
arXiv Detail & Related papers (2024-12-16T19:29:06Z) - One Language, Many Gaps: Evaluating Dialect Fairness and Robustness of Large Language Models in Reasoning Tasks [68.33068005789116]
We present the first study aimed at objectively assessing the fairness and robustness of Large Language Models (LLMs) in handling dialects in canonical reasoning tasks.
We hire AAVE speakers, including experts with computer science backgrounds, to rewrite seven popular benchmarks, such as HumanEval and GSM8K.
Our findings reveal that textbfalmost all of these widely used models show significant brittleness and unfairness to queries in AAVE.
arXiv Detail & Related papers (2024-10-14T18:44:23Z) - AlcLaM: Arabic Dialectal Language Model [2.8477895544986955]
We construct an Arabic dialectal corpus comprising 3.4M sentences gathered from social media platforms.
We utilize this corpus to expand the vocabulary and retrain a BERT-based model from scratch.
Named AlcLaM, our model was trained using only 13 GB of text, which represents a fraction of the data used by existing models.
arXiv Detail & Related papers (2024-07-18T02:13:50Z) - Voices Unheard: NLP Resources and Models for Yorùbá Regional Dialects [72.18753241750964]
Yorub'a is an African language with roughly 47 million speakers.
Recent efforts to develop NLP technologies for African languages have focused on their standard dialects.
We take steps towards bridging this gap by introducing a new high-quality parallel text and speech corpus.
arXiv Detail & Related papers (2024-06-27T22:38:04Z) - ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic [51.922112625469836]
We present datasetname, the first multi-task language understanding benchmark for the Arabic language.
Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA) and is carefully constructed by collaborating with native speakers in the region.
Our evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models.
arXiv Detail & Related papers (2024-02-20T09:07:41Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
State-of-the-art natural language processing (NLP) models are trained on massive training corpora, and report a superlative performance on evaluation datasets.
This survey delves into an important attribute of these datasets: the dialect of a language.
Motivated by the performance degradation of NLP models for dialectal datasets and its implications for the equity of language technologies, we survey past research in NLP for dialects in terms of datasets, and approaches.
arXiv Detail & Related papers (2024-01-11T03:04:38Z) - ALDi: Quantifying the Arabic Level of Dialectness of Text [17.37857915257019]
We argue that Arabic speakers perceive a spectrum of dialectness, which we operationalize at the sentence level as the Arabic Level of Dialectness (ALDi)
We provide a detailed analysis of AOC-ALDi and show that a model trained on it can effectively identify levels of dialectness on a range of other corpora.
arXiv Detail & Related papers (2023-10-20T18:07:39Z) - AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
The paper proposes a comprehensive solution that includes pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic.
The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities.
arXiv Detail & Related papers (2023-09-21T13:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.