論文の概要: Leveraging Intermediate Representations for Better Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2502.12849v1
- Date: Tue, 18 Feb 2025 13:38:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:07:47.692936
- Title: Leveraging Intermediate Representations for Better Out-of-Distribution Detection
- Title(参考訳): 分布外検出のための中間表現の活用
- Authors: Gianluca Guglielmo, Marc Masana,
- Abstract要約: 現実世界のアプリケーションでは、機械学習モデルは、安全でない決定を防ぐために、確実にアウト・オブ・ディストリビューション(OoD)サンプルを検出しなければなりません。
中間層の識別能力を分析し,OoD検出に有効であることを示す。
複数のデータセットにまたがって総合的な評価を行うことで,中間層アクティベーションによりOoD検出性能が向上することを示す。
- 参考スコア(独自算出の注目度): 3.903824667492754
- License:
- Abstract: In real-world applications, machine learning models must reliably detect Out-of-Distribution (OoD) samples to prevent unsafe decisions. Current OoD detection methods often rely on analyzing the logits or the embeddings of the penultimate layer of a neural network. However, little work has been conducted on the exploitation of the rich information encoded in intermediate layers. To address this, we analyze the discriminative power of intermediate layers and show that they can positively be used for OoD detection. Therefore, we propose to regularize intermediate layers with an energy-based contrastive loss, and by grouping multiple layers in a single aggregated response. We demonstrate that intermediate layer activations improves OoD detection performance by running a comprehensive evaluation across multiple datasets.
- Abstract(参考訳): 現実世界のアプリケーションでは、機械学習モデルは、安全でない決定を防ぐために、確実にアウト・オブ・ディストリビューション(OoD)サンプルを検出しなければなりません。
現在のOoD検出方法は、ニューラルネットワークの最後尾層のロジットや埋め込みを分析することに依存することが多い。
しかし、中間層に符号化されたリッチな情報の活用についてはほとんど研究されていない。
そこで本研究では,中間層の識別能力を分析し,OoD検出に有効であることを示す。
そこで本研究では,エネルギーベースのコントラスト損失を伴う中間層を正則化し,複数の層を1つの集約応答でグループ化する手法を提案する。
複数のデータセットにまたがって総合的な評価を行うことで,中間層アクティベーションによりOoD検出性能が向上することを示す。
関連論文リスト
- Beyond Perceptual Distances: Rethinking Disparity Assessment for Out-of-Distribution Detection with Diffusion Models [28.96695036746856]
Out-of-Distribution (OoD) 検出は、与えられたサンプルが分類器アンダープロテクションのトレーニング分布からのものであるかどうかを正当化することを目的としている。
DMベースの手法は、この分野に新たな洞察をもたらすが、未調査のままである。
本研究は、DM法における最先端検出性能を広範囲にわたる実験で実証した。
論文 参考訳(メタデータ) (2024-09-16T08:50:47Z) - Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark [73.58840254552656]
近年,非教師付きグラフレベルの異常検出(GLAD)と教師なしグラフレベルのアウト・オブ・ディストリビューション(OOD)検出が注目されている。
教師なしグラフレベルのOODと異常検出のための統一ベンチマーク(我々の方法)を提案する。
我々のベンチマークでは、4つの実用的な異常とOOD検出シナリオにまたがる35のデータセットを網羅している。
我々は,既存手法の有効性,一般化性,堅牢性,効率性について多次元解析を行った。
論文 参考訳(メタデータ) (2024-06-21T04:07:43Z) - A Functional Data Perspective and Baseline On Multi-Layer
Out-of-Distribution Detection [30.499548939422194]
複数のレイヤを探索するメソッドには、特別なアーキテクチャか、それを行うための管理対象が必要です。
この研究は、様々なレイヤとそれらの統計的依存関係を通してサンプルの軌跡を利用するネットワークの機能的なビューに基づいた、オリジナルのアプローチを採用する。
提案手法の有効性を実証的に検証し,OOD検出におけるOOD検出の有効性をコンピュータビジョンベンチマーク上での最先端のベースラインと比較した。
論文 参考訳(メタデータ) (2023-06-06T09:14:05Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Benchmarking Deep Models for Salient Object Detection [67.07247772280212]
汎用SALOD(General SALient Object Detection)ベンチマークを構築し,複数のSOD手法の総合的な比較を行った。
以上の実験では、既存の損失関数は、通常いくつかの指標に特化しているが、他の指標には劣る結果が報告されている。
我々は,深層ネットワークに画素レベルと画像レベルの両方の監視信号を統合することにより,より識別的な特徴を学習するためのエッジ・アウェア・ロス(EA)を提案する。
論文 参考訳(メタデータ) (2022-02-07T03:43:16Z) - Class-wise Thresholding for Detecting Out-of-Distribution Data [6.5295089440496055]
我々は,深層ニューラルネットワークを用いたOoD(Out-of-Distribution)入力データ検出の問題を考える。
既存のほとんどのOoD検出アルゴリズムに適用可能なクラスワイドしきい値決定方式を提案する。
論文 参考訳(メタデータ) (2021-10-28T16:54:48Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
セグメンテーションにおけるアウト・オブ・ディストリビューション(OOD)オブジェクトの検出に取り組む。
私たちの主な貢献は、ObsNetと呼ばれる新しいOOD検出アーキテクチャであり、ローカル・アタック(LAA)に基づく専用トレーニングスキームと関連付けられています。
3つの異なるデータセットの文献の最近の10つの手法と比較して,速度と精度の両面で最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-03T17:09:56Z) - Entropy Maximization and Meta Classification for Out-Of-Distribution
Detection in Semantic Segmentation [7.305019142196585]
自動運転など多くのアプリケーションにおいて,OoD(Out-of-Distribution)サンプルが不可欠である。
OoD検出の自然なベースラインアプローチは、ピクセル回りのソフトマックスエントロピーのしきい値です。
そのアプローチを大幅に改善する2段階の手順を提案する。
論文 参考訳(メタデータ) (2020-12-09T11:01:06Z) - A General Framework For Detecting Anomalous Inputs to DNN Classifiers [37.79389209020564]
本稿では,内部のディープニューラルネットワーク層表現に基づく教師なし異常検出フレームワークを提案する。
我々は,強力な逆攻撃とOOD入力を用いた画像分類データセットについて,提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-07-29T22:57:57Z) - Understanding and Diagnosing Vulnerability under Adversarial Attacks [62.661498155101654]
ディープニューラルネットワーク(DNN)は敵の攻撃に弱いことが知られている。
本稿では,潜在変数の分類に使用される特徴を説明するために,新しい解釈可能性手法であるInterpretGANを提案する。
また、各層がもたらす脆弱性を定量化する最初の診断方法も設計する。
論文 参考訳(メタデータ) (2020-07-17T01:56:28Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
本稿では,効率的な物体検出のためのバイナライズニューラルネットワークのBiDetを提案する。
我々のBiDetは、冗長除去による物体検出にバイナリニューラルネットワークの表現能力を完全に活用している。
我々の手法は、最先端のバイナリニューラルネットワークを大きなマージンで上回る。
論文 参考訳(メタデータ) (2020-03-09T08:16:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。