論文の概要: PAFT: Prompt-Agnostic Fine-Tuning
- arxiv url: http://arxiv.org/abs/2502.12859v1
- Date: Tue, 18 Feb 2025 13:46:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:08:39.352024
- Title: PAFT: Prompt-Agnostic Fine-Tuning
- Title(参考訳): PAFT:prompt-Agnostic Fine-Tuning
- Authors: Chenxing Wei, Yao Shu, Mingwen Ou, Ying Tiffany He, Fei Richard Yu,
- Abstract要約: Prompt-Agnostic Fine-Tuning(PAFT)を提案する。
PAFTは2つの段階で機能する: 第一に、有意義で合成された候補プロンプトの多様なセットが構築される。
第二に、微調整の間、プロンプトはこのセットからランダムにサンプリングされ、動的トレーニングインプットを生成する。
- 参考スコア(独自算出の注目度): 11.834072667345957
- License:
- Abstract: While Large Language Models (LLMs) adapt well to downstream tasks after fine-tuning, this adaptability often compromises prompt robustness, as even minor prompt variations can significantly degrade performance. To address this, we propose Prompt-Agnostic Fine-Tuning(PAFT), a simple yet effective approach that dynamically adjusts prompts during fine-tuning. This encourages the model to learn underlying task principles rather than overfitting to specific prompt formulations. PAFT operates in two stages: First, a diverse set of meaningful, synthetic candidate prompts is constructed. Second, during fine-tuning, prompts are randomly sampled from this set to create dynamic training inputs. Extensive experiments across diverse datasets and LLMs demonstrate that models trained with PAFT exhibit strong robustness and generalization across a wide range of prompts, including unseen ones. This enhanced robustness improves both model performance and inference speed while maintaining training efficiency. Ablation studies further confirm the effectiveness of PAFT.
- Abstract(参考訳): 大規模言語モデル(LLM)は微調整後に下流のタスクにうまく適応するが、この適応性は、小さなプロンプトのバリエーションでさえパフォーマンスを著しく低下させるため、しばしば、迅速な堅牢性を損なう。
そこで本研究では,Pmpt-Agnostic Fine-Tuning(PAFT)を提案する。
これにより、特定の急進的な定式化に過度に適合するのではなく、基礎となるタスク原則を学ぶことが促される。
PAFTは2つの段階で機能する: 第一に、有意義で合成された候補プロンプトの多様なセットが構築される。
第二に、微調整の間、プロンプトはこのセットからランダムにサンプリングされ、動的トレーニングインプットを生成する。
多様なデータセットとLLMにわたる大規模な実験により、PAFTで訓練されたモデルは、目に見えないものを含む幅広いプロンプトにわたって強い堅牢性と一般化を示すことが示された。
この強化された堅牢性は、トレーニング効率を維持しながら、モデル性能と推論速度の両方を改善する。
アブレーション研究はPAFTの有効性をさらに確認する。
関連論文リスト
- Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
マルチビヘイビアシークエンシャルレコメンデーションに適した,最初の事前学習および迅速な学習パラダイムであるDPCPLを提案する。
事前学習段階において,複数の時間スケールでノイズを除去する新しい行動マイナ (EBM) を提案する。
次に,提案するCustomized Prompt Learning (CPL)モジュールを用いて,事前学習したモデルを高効率にチューニングすることを提案する。
論文 参考訳(メタデータ) (2024-08-21T06:48:38Z) - DePT: Decomposed Prompt Tuning for Parameter-Efficient Fine-tuning [14.975436239088312]
ソフトプロンプトを短いソフトプロンプトと2つの異なる学習率で最適化された低ランク行列に分解するDePTを提案する。
DePTは、いくつかのシナリオにおいて、完全な微調整ベースラインを含む最先端のPEFTアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-09-11T00:02:05Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
視覚言語による事前学習モデルでは、事前学習タスクと下流タスクのギャップを埋めるために、しばしば多くの学習可能なトークンを必要とする。
本稿では,効率的なVL転送学習を実現するために,APT(Approximated Prompt Tuning)アプローチを提案する。
論文 参考訳(メタデータ) (2023-06-27T05:43:47Z) - Dynamic Prompting: A Unified Framework for Prompt Tuning [33.175097465669374]
本稿では、特定のタスクやインスタンスに基づいて、異なるプロンプトの要因を動的に決定する統合動的プロンプト(DP)チューニング戦略を提案する。
実験結果は、幅広いタスクにわたる動的プロンプトチューニングによって達成された顕著なパフォーマンス改善を裏付けるものである。
我々は、全データ、少数ショット、マルチタスクのシナリオの下で、我々のアプローチの普遍的な適用性を確立する。
論文 参考訳(メタデータ) (2023-03-06T06:04:46Z) - Prompt Tuning for Generative Multimodal Pretrained Models [75.44457974275154]
我々は、理解タスクと生成タスクの両方に適応した統合シーケンス・ツー・シーケンス事前学習モデルに、即時チューニングを実装した。
実験結果から,軽量なプロンプトチューニングはファインタニングで同等の性能を発揮することが示された。
微調整モデルと比較して、プロンプト調整モデルでは敵攻撃に対する堅牢性が改善されている。
論文 参考訳(メタデータ) (2022-08-04T08:56:38Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
インスタンスワイドのPrompt Tuning(IPT)は、入力データインスタンスからプロンプトに知識を注入する最初のプロンプト学習パラダイムである。
IPTはタスクベースのプロンプト学習法を著しく上回り、調律パラメータのわずか0.5%から1.5%で従来の微調整に匹敵する性能を達成している。
論文 参考訳(メタデータ) (2022-06-04T10:08:50Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
本稿では、強化学習(RL)を用いた離散的高速最適化手法RLPromptを提案する。
RLPromptは、マスク付きジベリッシュ(例:grammaBERT)や左から右へのモデル(例:GPT)など、様々な種類のLMに柔軟に適用可能である。
少数ショット分類と教師なしテキストスタイル転送の実験は、既存のファインタニングやプロンプト手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-05-25T07:50:31Z) - Input-Tuning: Adapting Unfamiliar Inputs to Frozen Pretrained Models [82.75572875007755]
NLGタスクの即時チューニングの発達を妨げる要因の1つは、馴染みの無い入力である、と我々は主張する。
これは、連続的なプロンプトと入力表現の両方を微調整する入力チューニングを提案する動機である。
提案する入力チューニングは概念的にシンプルで,実証的に強力である。
論文 参考訳(メタデータ) (2022-03-07T05:04:32Z) - PPT: Pre-trained Prompt Tuning for Few-shot Learning [47.05554619258627]
事前学習された言語モデル(PLM)のプロンプトは、事前学習タスクと様々な下流タスクのギャップを埋めることで、顕著な性能を示している。
これらの手法のうち、PLMを凍結し、ソフトプロンプトのみをチューニングするプロンプトチューニングは、大規模PLMを下流タスクに適用するための効率的かつ効果的なソリューションを提供する。
本研究では,下流データで十分である場合,従来のフルモデルファインチューニングと相容れない性能が得られた。
論文 参考訳(メタデータ) (2021-09-09T15:11:04Z) - GPT Understands, Too [42.701765107498346]
本稿では,個別のプロンプトと組み合わせたトレーニング可能な連続プロンプト埋め込みを用いた新しいP-Tuning法を提案する。
P-Tuningは一般的に、完全に教師された設定と少数の設定の両方の下で、凍結された言語モデルとチューニングされた言語モデルの両方に有効である。
論文 参考訳(メタデータ) (2021-03-18T17:13:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。