論文の概要: PAFT: Prompt-Agnostic Fine-Tuning
- arxiv url: http://arxiv.org/abs/2502.12859v2
- Date: Sat, 27 Sep 2025 16:46:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-30 17:47:08.826295
- Title: PAFT: Prompt-Agnostic Fine-Tuning
- Title(参考訳): PAFT:prompt-Agnostic Fine-Tuning
- Authors: Chenxing Wei, Yao Shu, Mingwen Ou, Ying Tiffany He, Fei Richard Yu,
- Abstract要約: 微調整された大きな言語モデル(LLM)は、しばしば特定のプロンプト語に過剰な適合を引き起こす。
本稿では,トレーニング中の動的プロンプト変動によるロバスト性向上手法であるPrompt-Agnostic Fine-Tuning(PAFT)を提案する。
- 参考スコア(独自算出の注目度): 24.209557567599393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fine-tuning large language models (LLMs) often causes overfitting to specific prompt wording, where minor phrasing variations drastically reduce performance. To address this, we propose Prompt-Agnostic Fine-Tuning (PAFT), a method that enhances robustness through dynamic prompt variation during training. PAFT first generates diverse synthetic prompts, then continuously samples from this set to construct training instances, forcing models to learn fundamental task principles rather than surface-level patterns. Across systematic evaluations using both supervised fine-tuning (SFT) and reinforcement learning fine-tuning (RLFT), PAFT demonstrates substantially improved prompt robustness, achieving 7% higher generalization accuracy on unseen prompts than standard methods. In addition to enhanced robustness, PAFT consistently yields superior overall performance on established benchmarks for question answering, mathematical reasoning, and tool use. Notably, models trained with PAFT attain 3.2 faster inference speeds due to reduced prompt sensitivity. Ablation studies further validate effectiveness of PAFT, while theoretical analysis reveals that PAFT can effectively enhance the cross-domain generalization ability of LLM.
- Abstract(参考訳): 微調整された大きな言語モデル(LLM)は、しばしば特定のプロンプト語に過剰な適合を引き起こす。
そこで本研究では,トレーニング中の動的プロンプト変動によるロバスト性向上手法であるPrompt-Agnostic Fine-Tuning(PAFT)を提案する。
PAFTはまず多様な合成プロンプトを生成し、続いてこのセットから継続的にサンプルを採取してトレーニングインスタンスを構築する。
教師付き微調整(SFT)と強化学習微調整(RLFT)の両方を用いて系統評価を行ったところ、PAFTはプロンプトロバスト性を大幅に改善し、標準手法よりも7%高い一般化精度を実現した。
堅牢性の向上に加えて、PAFTは、質問応答、数学的推論、ツール使用のための確立されたベンチマークにおいて、常に優れた全体的なパフォーマンスを得る。
特にPAFTで訓練されたモデルでは、迅速な感度の低下による推論速度が3.2速かった。
アブレーション研究はPAFTの有効性をさらに検証する一方、理論解析によりPAFTはLLMのクロスドメイン一般化能力を効果的に向上できることが示された。
関連論文リスト
- Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
本稿では,動的かつ反復的なフレームワークであるAdaptive Promptingを紹介する。
その結果、Adaptive Promptingは、算術的推論(GSM8K、MultiArithm)、論理的推論、コモンセンスタスクなど、様々な推論ベンチマークのパフォーマンスを著しく向上させることを示した。
提案手法は,計算効率を維持しつつ,GPT-4などの大規模モデルと競合する性能を実現する。
論文 参考訳(メタデータ) (2024-10-10T17:14:36Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
マルチビヘイビアシークエンシャルレコメンデーションに適した,最初の事前学習および迅速な学習パラダイムであるDPCPLを提案する。
事前学習段階において,複数の時間スケールでノイズを除去する新しい行動マイナ (EBM) を提案する。
次に,提案するCustomized Prompt Learning (CPL)モジュールを用いて,事前学習したモデルを高効率にチューニングすることを提案する。
論文 参考訳(メタデータ) (2024-08-21T06:48:38Z) - StablePT: Towards Stable Prompting for Few-shot Learning via Input Separation [14.341806875791288]
sysnameは最先端の手法を6.97%精度で上回り、標準偏差を平均1.92倍に下げる。
テストは、さまざまなタスクをカバーする8つのデータセットの堅牢性と安定性を強調している。
論文 参考訳(メタデータ) (2024-04-30T08:01:49Z) - Do Compressed LLMs Forget Knowledge? An Experimental Study with
Practical Implications [63.29358103217275]
大規模言語モデル(LLM)は、特に知識集約的なタスクにおいて、パフォーマンスを低下させることが多い。
損傷の性質に関する2つの予想を提案する。1つは、圧縮後に忘れられた(または消された)知識である。
Inference-time Dynamic Prompting (IDP)と呼ばれる変種を導入し、推論オーバーヘッドを発生させることなく、迅速な多様性を効果的に向上させることができる。
論文 参考訳(メタデータ) (2023-10-02T03:12:06Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
視覚言語による事前学習モデルでは、事前学習タスクと下流タスクのギャップを埋めるために、しばしば多くの学習可能なトークンを必要とする。
本稿では,効率的なVL転送学習を実現するために,APT(Approximated Prompt Tuning)アプローチを提案する。
論文 参考訳(メタデータ) (2023-06-27T05:43:47Z) - Dynamic Prompting: A Unified Framework for Prompt Tuning [33.175097465669374]
本稿では、特定のタスクやインスタンスに基づいて、異なるプロンプトの要因を動的に決定する統合動的プロンプト(DP)チューニング戦略を提案する。
実験結果は、幅広いタスクにわたる動的プロンプトチューニングによって達成された顕著なパフォーマンス改善を裏付けるものである。
我々は、全データ、少数ショット、マルチタスクのシナリオの下で、我々のアプローチの普遍的な適用性を確立する。
論文 参考訳(メタデータ) (2023-03-06T06:04:46Z) - Prompt Tuning for Generative Multimodal Pretrained Models [75.44457974275154]
我々は、理解タスクと生成タスクの両方に適応した統合シーケンス・ツー・シーケンス事前学習モデルに、即時チューニングを実装した。
実験結果から,軽量なプロンプトチューニングはファインタニングで同等の性能を発揮することが示された。
微調整モデルと比較して、プロンプト調整モデルでは敵攻撃に対する堅牢性が改善されている。
論文 参考訳(メタデータ) (2022-08-04T08:56:38Z) - Instance-wise Prompt Tuning for Pretrained Language Models [72.74916121511662]
インスタンスワイドのPrompt Tuning(IPT)は、入力データインスタンスからプロンプトに知識を注入する最初のプロンプト学習パラダイムである。
IPTはタスクベースのプロンプト学習法を著しく上回り、調律パラメータのわずか0.5%から1.5%で従来の微調整に匹敵する性能を達成している。
論文 参考訳(メタデータ) (2022-06-04T10:08:50Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
本稿では、強化学習(RL)を用いた離散的高速最適化手法RLPromptを提案する。
RLPromptは、マスク付きジベリッシュ(例:grammaBERT)や左から右へのモデル(例:GPT)など、様々な種類のLMに柔軟に適用可能である。
少数ショット分類と教師なしテキストスタイル転送の実験は、既存のファインタニングやプロンプト手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-05-25T07:50:31Z) - Input-Tuning: Adapting Unfamiliar Inputs to Frozen Pretrained Models [82.75572875007755]
NLGタスクの即時チューニングの発達を妨げる要因の1つは、馴染みの無い入力である、と我々は主張する。
これは、連続的なプロンプトと入力表現の両方を微調整する入力チューニングを提案する動機である。
提案する入力チューニングは概念的にシンプルで,実証的に強力である。
論文 参考訳(メタデータ) (2022-03-07T05:04:32Z) - PPT: Pre-trained Prompt Tuning for Few-shot Learning [47.05554619258627]
事前学習された言語モデル(PLM)のプロンプトは、事前学習タスクと様々な下流タスクのギャップを埋めることで、顕著な性能を示している。
これらの手法のうち、PLMを凍結し、ソフトプロンプトのみをチューニングするプロンプトチューニングは、大規模PLMを下流タスクに適用するための効率的かつ効果的なソリューションを提供する。
本研究では,下流データで十分である場合,従来のフルモデルファインチューニングと相容れない性能が得られた。
論文 参考訳(メタデータ) (2021-09-09T15:11:04Z) - GPT Understands, Too [42.701765107498346]
本稿では,個別のプロンプトと組み合わせたトレーニング可能な連続プロンプト埋め込みを用いた新しいP-Tuning法を提案する。
P-Tuningは一般的に、完全に教師された設定と少数の設定の両方の下で、凍結された言語モデルとチューニングされた言語モデルの両方に有効である。
論文 参考訳(メタデータ) (2021-03-18T17:13:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。